Prepared for: Berrys Ltd

Flood Risk Assessment and Surface Water Management plan for Sheepcote farm, Clifford, Herefordshire HR3 5HU

Report K0657b Rep1 Rev1

February 2019

Prepared and submitted by

Hydro-Logic Services (part of Hydro International plc) Unit 6, Commerce Park, Brunel Rd, Theale, Reading, Berkshire RG7 4AB

> T: 01189 331 325 F: 01189 331 486

enquiries@hydro-logic.co.uk

www.hydro-logic.co.uk

EXECUTIVE SUMMARY OF REPORT

This report documents work undertaken by Hydro-Logic Services for Berrys Ltd in care of Mr Ben Corbett in December 2018 and January 2019.

The purpose of the work was:

- To assess flood risk at this site in terms of the National Planning Policy Framework (NPPF) and, where necessary, to recommend measures to achieve compliance.
- to conceptually design the surface water management plan for a livestock cubicle, a slurry basin and a cattle milking area;
- to report the findings of this design assessment;
- to demonstrate that surface water drainage arrangements comply with the National Planning Policy Framework and Herefordshire core strategy policies SD3 and SD4.

The key outcomes of the work are:

- The surface water runoff generated from any roofs and impermeable surfaces will be released gradually to an existing watercourse. The surface water runoff will be attenuated by means of a buried attenuation tank to the East of the development.
- Any dirty waters flows resulting from operations and cleaning activities are to be pumped in the slurry lagoon;
- The slurry lagoon crest level is to be set above the 1 in 100 year + 35%CC fluvial flood level. Any loss of storage of the floodplain is to be compensated locally;

The work delivered the following outputs:

- Flood Risk Assessment;
- Surface Water Management Plan.

Contributors for Hydro-Logic Services (international) Ltd:

Alan Corner	Project Director
Joao Gil	Project Manager & reviewer
Simone Pinna-Nossai	Flood Risk Analyst & Report Author

Document Status and Revision History:

Version	Date	Author	Reviewer	Authorisation	Status/Comment
0	12/02/2019	SPN	JSG	AC	For comment
1	14/02/2019	JSG	-	AC	First Issue

Limitation of liability and use

The work described in this report was undertaken for the party or parties stated; for the purpose or purposes stated; to the time and budget constraints stated. No liability is accepted for use by other parties or for other purposes, or unreasonably beyond the terms and parameters of its commission and its delivery to normal professional standards

K0657b_Sheepcote_Farm_Rep1Rev1_Issue_20190214

TABLE OF CONTENTS

1.	Introduction	1
2.	Pre-development site characteristics	3
2.1.		
2.2.	. Flood risk Vulnerability	5
2.3.		
2.4.	. Overall flood risk	6
2.5.	. Flood zone assessment	7
2.6.	Impact in the floodplain	
2.7.		
2.8.	Infiltration rates	11
2.9.	. Greenfield runoff rates and volumes	12
3.	Proposed Development	14
4.	Surface Water Drainage Strategy	16
4.1		
4.2		
4.3		
4.4		
4.5	Surface water drainage of silage bay and slurry lagoon	20
4.6	Residual Risks	21
5.	Conclusions	23
6.	References	25
Ap	pendix A Check List for NPPF Guidance on Flood Risk	27
Ap	pendix B - Infiltration Testing Results from Sheepcote Farm	31
Ap	pendix C – Micro-drainage Outputs	32
Ap	pendix D – Environment Agency Product 4	57
Ap	pendix E – Slurry lagoon storage calculations	65

K0657b_Sheepcote_Farm_Rep1Rev1_Issue_20190214

1. Introduction

This report presents a Flood Risk Assessment (FRA) for the proposed agricultural development on land at Sheepcote Farm, Clifford HR3 5HU. It is proposed to provide a dairy unit which will comprise of a milking parlour building, livestock cubicle building, concrete yard areas and retention of a slurry lagoon. A silage which has been in place in excess of four years also forms part of the dairy unit.

The Objective of this report is to assess flood risk at the site in relation to the proposed development. The FRA will identify sources of flood hazard that apply to the development and restrictions associated with such hazards, giving design solutions which meet current regulations. The findings of this report should be used to inform future stages of the sites master planning plus design.

The proposed outline flood risk assessment and surface water drainage strategy has been prepared in accordance with the guidance and requirements set out in the following reports:

- Strategic Flood Risk Assessment for Herefordshire Technical report, 2009;
- Environment Agencies 'Flood Map for Planning, 2018;
- National Standards for Sustainable Drainage Systems (2011) and;
- The CIRIA SuDS Manual (2015).

2. **Pre-development site characteristics**

2.1 Location

The site of the proposed development is located within Sheepcote farm in Clifford, Herefordshire, HR3 5HU – Table 1. The site is an undeveloped field currently under agricultural use.

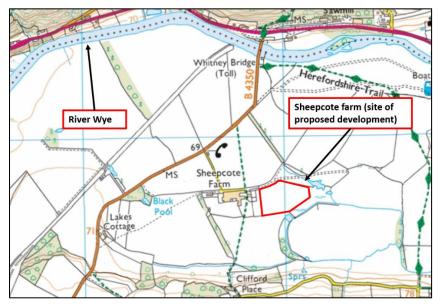

Eastings, Northings	325716, 246715
Nearest Post Code	HR3 5HU
Lat (WGS84)	N52:06:50(52.113962)
Long (WGS84)	W3:04:53 (-3.081396)
Nat Grid	SO260467 / SO2604646734

Table 1 - Coordinates and post code of the site

The proposed development comprises a silage bay, slurry basin, a livestock cubicle and a milking parlour building. The buildings have some concrete surfaces around then and gravel areas, allowing water to soak through.

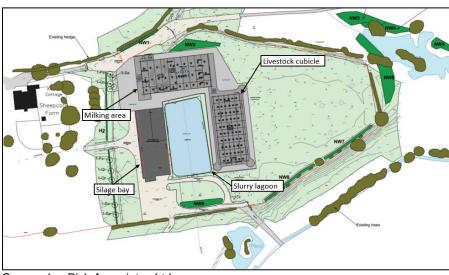

The coordinates for the site are shown in Table 1 and its geographical location is shown in Figure 2-1. A layout plan and an aerial photograph are also shown in Figure 2-2 and Figure 2-3, respectively.

Figure 2-1 – Location of the site in Clifford

Reproduced under Licence 100041271

Hydro-Logic Services Page 4

Figure 2-2 - Layout plan of the proposed development

Source: Ian Pick Associates Ltd

Figure 2-3 - Aerial photograph of the site (Site boundary in red)

Source: Google Maps

2.2 Flood risk Vulnerability


As the proposed development consists in a series of buildings with agricultural purposes, it falls within the *'less vulnerable'* classification of the NPPF, Table 2. Less vulnerable developments within Flood Zone 3a are not subject to the exception test, however these should not be permitted within Flood Zone 3b.

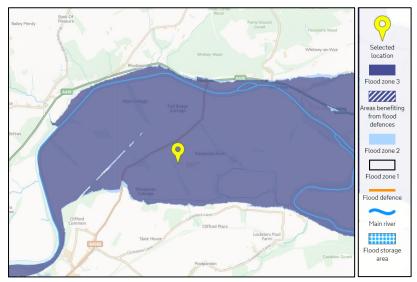
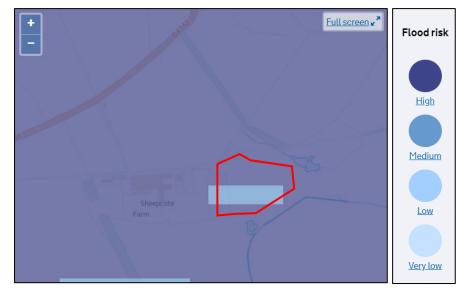

Flood Zones	Flood Risk Vulnerability Classification							
	Essential infrastructure	Highly vulnerable	More vulnerable	Less vulnerable	Water compatible			
Zone 3a †	Exception Test required †	x	Exception Test required	1	1			
Zone 3b *	Exception Test required *	x	x	x	✓*			
Key:								
✓ Deve	elopment is appr	opriate						
X Deve	elopment should	not be perm	itted.					

Table 2 – Description of flood zones

2.3 Flood zone and inherent risk

The Environment Agency Flood Map for planning, detailed in Figure 2-4, shows that Sheepcote farm falls well within the flood zone 3 limits, defined as "(...) having a 1 in 100 or greater annual probability of river flooding". The flood zones provided by the environment agency consider the maximum flood likely to occur from 100 years of maximum flows **under current climate conditions,** and therefore any further analysis will have to take into account the climate change allowances defined within the NPPF.



Source: Environment Agency flood map for planning

However, the flood risk map from EA (Figure 2-5) shows a *"medium risk" flooding* area – meaning a yearly chance of flooding between 1% and 3.3% – within the red boundary of the development. From this high scope analysis, it is concluded that the site may fall within Flood Zone 3a and therefore this is the main trigger for the investigations carried in the following sections. In addition to this, note that the flood maps presented by Environment Agency, show undefended flood extents only.

2.4 Overall flood risk

The possible sources of surface flood risk which could affect this site are listed in Table 3.

Key Sources of Flooding	Possibility at Site
Fluvial	High (Flood zone 3)
Tidal	N/A
Groundwater	Very Low
Sewers	Low as rural agricultural development
Surface water	Very low
Infrastructure failure	Falls within flood risk zone from reservoirs*

Table 3 Sources	of flooding th	at could	affect the site
------------------------	----------------	----------	-----------------

List sourced from information in Herefordshire Council Strategic Flood Risk Assessment part 3

* Reservoirs 'Claerwen' and 'Caban Coch' lie upstream, although no loss of life from reservoir flooding in the UK since 1925.

Flooding Source	Number of Reports	Most reported Postcode	% of total
Fluvial	136	HR2 6, HR6 9, LD8 2, SY8 4	25%
Land Drainage	62	HR6 0, HR6 9, HR81, HR8 2, SY8 4	11%
Groundwater	2	HR7 4, LD8 2	<1%
Storm Sewers	5	HR2 6, HR4 9, HR8 1	1%
Foul Sewers	2	HR2 0, SY8 4	<1%
Highway Drainage	21	HR1 3, HR6 9, HR9 5,	4%
Culvert	8	HR3 5, HR4 8, HR6 8, HR9 7, WR6 5	2%
Unknown or " "	237		43%
TOTAL	552		

Table 4 – Summary of Flooding Reports by Source

Source: Herefordshire City Council SFRA

Information on types of flooding likely to impact the development site is detailed in Herefordshire Council Flood Risk Management Strategy – Table 4. Surface water flooding is likely to be low, as the site is out of any urban areas and currently resides on managed agricultural grassland.

From Table 4 it is concluded that 136 flood occurrences were identified due to fluvial sources. However, none of these occurrences was registered within HR3 5.

The extent of aquifers within Herefordshire is 'somewhat limited' therefore groundwater flooding is not expected to be a significant issue. This is in line with HCC SFRA, which shows only 2 report of flooding due to ground water, out of a grand total of 552. However, note that Herefordshire SFRA identified 8 flood occurrences due to insufficient capacity of culverts, including in the area of HR3 5.

As detailed in section 3, flooding risk from fluvial sources is considered as 'medium' for Sheepcote farm and the proposed development. The site however is classed as 'less vulnerable' as agricultural developments are proposed.

2.5 Flood zone assessment

Fluvial flood risk at the site is mainly from the River Wye, which flows from west to east, to the north of the site. Apart from this, a brook located to the south of the site also increases the fluvial flood risk (Figure 2-6). Hydraulic modelling outputs provided by Environment Agency (Figure 2-6), show that the site, under the 'defended' modelling conditions, would still experience flooding.

The production of Environment Agency 'Product 4' (Figure 2-6) information on flood risk has indicated that the majority of the site falls within the 1.33% Annual Exceedance Probability (AEP), without any climate change allowance included in these extents. This means there is a 1.33% chance of the 1 in 75 year magnitude flood occurring in any given year. To the West side of the site, the ground levels increase meaning that there is a 1 in 100 AEP of flooding at this site. This indicates that the flow magnitude expected from the greatest flood event out of a 100 year time-series, would likely flood this section of the site.

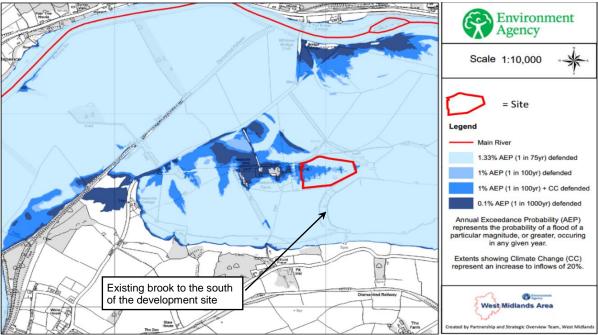


Figure 2-6 – Modelled Flood Outlines - Defended scenarios 1.33% to 0.1% AEP

Hydro-Logic Services

Page 8

Source: Environment Agency (Product 4)

The attached *Product 4* letter in Appendix D shows the 1D model node points indicating river flows and levels at each node point. The node points considered in the fluvial flooding analysis are nodes 52 and 53 (Figure 2-7). The flood levels for node 52 range between 69.09mAOD and 69.3mAOD and between 69.02mAOD and 69.06mAOD for node 53.

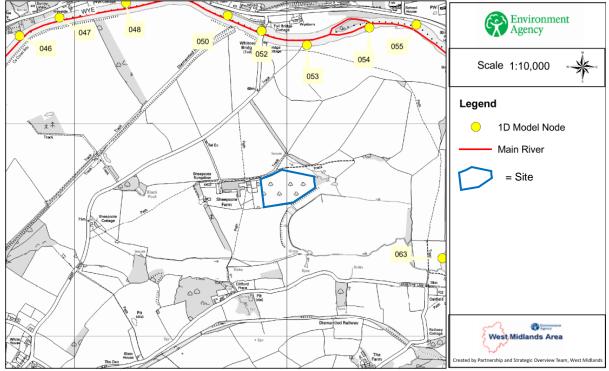


Figure 2-7 – Node location map

Source: Environment Agency

Since the hydraulic modelling of River Wye was conducted, the Environment Agency requirements for climate change allowances have increased from 20% (applied in the

modelling) to a 35% increment to the peak flow. To meet these new requirements, the impact of a 20% climate change allowance in the river flow was estimated for Table 5. The rate of increment for a 20% climate change allowance was shown to be 12% as per Table 6 – see column *rate of increment*. The 35% rate of increment was then obtained via a linear extrapolation and shown to be around 20% – see Table 6 column *rate of increment* *. The river flows for a certain return period and taking into account a climate change allowance of 25% were then obtained by applying a *1.22* coefficient to the respective river flow

			Annual Exceedance Probability - Maximum Flows (m³/s) defended									
Node Label	Easting	Northing	50% (1 in 2)	20% (1 in 5)	10% (1 in 10)	5% (1 in 20)	2% (1 in 50)	1.33% (1 in 75)	1% (1 in 100)	1% (1 in 100) inc. 20% Climate Change	0.5% (1 in 200)	0.1% (1 in 1000)
52	325884	247437	390.804	440.409	478.699	512.093	559.756	583.439	601.700	676.188	652.831	819.777
53	326097	247371	390.793	440.401	478.692	512.086	559.717	583.258	601.262	672.755	650.750	804.624

Table 5 - EA modelled fluvial flood flows for nodes 52 and 53.

Source: Environment Agency (Product 4)

As an example, for node 52 the 1:100 year peak flow of 601.700m³/s increases by 74.488m³/s, once a 20% climate change allowance has been added. Assuming there's a linear relation between the climate change allowance and the river flows, a 35% climate change allowance would raise the river peak flow by 130.354 m³/s (35/20 * 74.488 m³/s). The same methodology was applied to the 1:20 year flood event and, to node label 53 obtaining the data produced in Table 10. Once evaluated the maximum flows with 35% climate change allowance, the water level for each node it has been extrapolated from the charts shown in Figure 2-8. The charts have been created plotting the water level against the river flows provided by Environment Agency 'Product 4' (Appendix D), and a regression was applied to obtain the power equation that best fits the data.

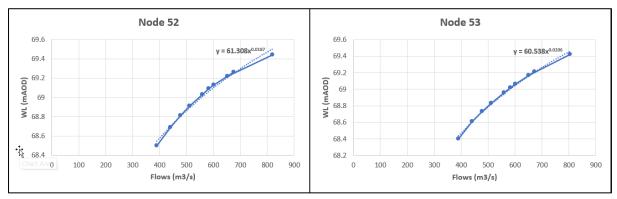


Figure 2-8 – River flow against depth for nodes 52 and 53.

Table 6 - Extrapolated modelled flows and flood levels for the site

An	nual Exce	edance P	robability - Ma	ximum Fl	ows (m ³ /s	s) and Max	imum Water	Levels (r	n AOD) de	fended
Node	1% (1 in 100)	1% (1 in 100) + 20%CC	Difference between 1%+20CC and 1%	rate of increment	1% (1 in 100) + 35%CC	WL (mAOD) 1% (1 in 100) + 35%CC	rate of increment* (1:100+35%CC) /(1:100)	5% (1 in 20)	5% (1 in 20) + 35% CC*	WL (mAOD) 5% (1 in 20) + 35% CC
52	601.7	676.188	74.488	1.12	732.054	69.36	1.22	512.093	623.034	69.15
53	601.262	672.755	71.493	1.12	726.375	69.34	1.21	512.086	618.643	69.11

Table 10 shows estimated flood depths at the site during the 1:100 year+35%CC and during the 1:20 years+35%CC fluvial flood. The flood depths have been calculated to estimate where the border between flood zones FZ2, FZ3a and FZ3b. Results show that the 1:100

year+35%CC fluvial event on River Wye would reach a water level between 69.36mAOD and 69.34mAOD at the site and, the 1:20 year+35%CC fluvial event on River Wye would reach a water level between 69.15mAOD and 69.11mAOD at the site (Table 10). Assuming that FZ3b is bordered by the 1 in 20year +35%CC flood level, this means that the development falls within FZ3b as the ground levels vary between 68.25mAOD and 68.75mAOD (Figure 2-9).

Even though the site was found to be within Flood Zone 3b and according to NPPF no agricultural developments should take place in the area, it is believed that this can be attenuated by two main points:

- 1) The proposed development is an expansion of an existing development, at the date:
- 2) <u>No additional people will be put at risk in a future stage of the development, as its</u> nature is simply agricultural. Note that the development comprises a livestock cubicle, a milking yard, a sileage bay and a slurry basin.

 Fordestents of FZ3b (1:20yr435%cc;)

Figure 2-9 – Modelled flood level extents for 1:20 yr+35%fluvial event

2.6 Impact in the floodplain

Although the development is located within Flood Zone 3, both the livestock cubicle and the milking area are considered to have an impact in the floodplain as the local ground levels – generally around 68.300mAOD are to be raised to a finish floor level of 69.300mAOD. However, note that there will be no loss of floodplain associated with the structure itself, as these are considered to be floodable.

In what concerns the slurry basin, it is proposed that such feature is built as part of an embankment, with a top level of roughly 70.9mAOD. As the surrounding soils levels range between 68.25mAOD and 68.75mAOD, this will result in a loss of the floodplain storage, meaning that level-by-level flood storage compensation will be required.

2.7 Soil Characteristics

The site is located on agricultural land comprising small amounts of previous development. Runoff rates and volumes are expected to be close to greenfield runoff rates and volumes. The Soilscapes regional soil mapping reproduced in Figure 2-10 shows that the site lies on soils characterised as "Freely draining floodplain soils".

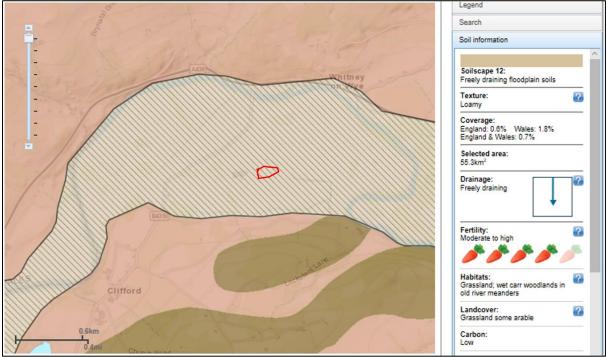


Figure 2-10 - Soil map at the location of the site (site boundary in red)

Source: Cranfield University Soilscapes map

2.8 Infiltration rates

Infiltration tests for the site were obtained from measurements carried out for a previous project within Sheepcote farmland in 2015. Three tests were performed which found that the pits took 90 minutes to drain from 25% to 75% of the pit effective depth. This resulted in a rate of 0.08m/hr. The infiltration results suggest the site exhibits similar characteristics to that of the generalised BGS soil characteristics.

2.9 Greenfield runoff rates and volumes

The Flood Estimation Handbook (FEH) Web Service was used to retrieve the descriptors of the catchment that contains site. The retrieved catchment boundary is shown in Figure 2-11, with the site boundary shown in red. It may be seen that the retrieved catchment is significantly larger than the site, including the whole catchment of the tributary draining into the small agriculturally modified watercourse. Nevertheless, with the exception of the AREA descriptor, the retrieved catchment descriptors are considered likely to be representative of the site.

A selection of the catchment descriptors for the retrieved catchment are listed in Table 7. The percentage runoff (SPRHOST) and base flow index (BFIHOST) values of 0.5960% and 38.13 respectively are consistent with the freely draining soils at the site. The soakaway tests indicated good drainage within the site, which agree with the freely draining soils indicated by the BGS Soilscape.

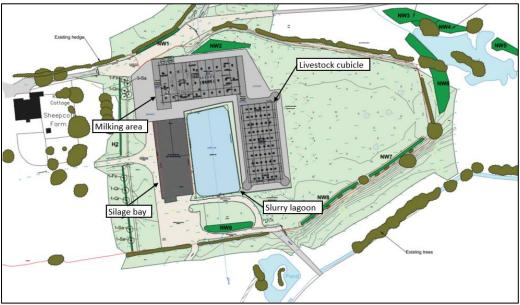
Figure 2-11: FEH Catchment containing the site (site boundary in red)

Source: © Centre for Ecology & Hydrology

	Location:	Land surrounding Sheepcote Farm, Clifford
	NGR (catchment outlet):	326000, 246550
	NGR (catchment centroid):	SO 26000 46550
AREA	Catchment area (km ²)	0.77
ALTBAR	Base flow index (m)	70
ASPBAR	Base flow index (degrees)	142
ASPVAR	Base flow index	0.41
BFIHOST	Base flow index	0.5960
DPLBAR	Mean drainage path length (km)	0.84
DPSBAR	Mean drainage path slope (m/km)	1.60
FARL	Index of lakes	1
LDP	Longest drainage path (km)	1.70
PROPWET	Proportion of time soil is wet	0.49
RMED-1H	Median 1 hour rainfall (mm)	9.0
RMED-1D	Median 1 day rainfall (mm)	37.4
RMED-2D	Median 2 day rainfall (mm)	51.2
SAAR6190	SAAR for the period 1961-1990 (mm)	801
SAAR4170	SAAR for the period 1941-1970 (mm)	898
SPRHOST	Percentage runoff	38.13
URBEXT2000	Urban extent 2000	0

Table 7 - Catchment characteristics for the catchment containing the site

Source: © Centre for Ecology & Hydrology


The site boundary encloses an impermeable area of approximately 3,174m². Referencing a subset of the catchment descriptors reproduced in Table 7, greenfield runoff rates and volume calculations were undertaken for a range of rainfall events. The results for the peak greenfield runoff rates, and the corresponding runoff volumes, are shown in Table 8.

Return period (years)	Runoff rate (l/s)	Runoff rate (I/s/ha)	Runoff volume (m ³)
2	1.39	1.75	11.1
30	3.71	4.69	30.6
100	5.29	6.69	44.1

3. **Proposed Development**

As mentioned previously, the proposed development comprises four new structures – a silage bay (this has been in place for over four years), a slurry lagoon, a livestock cubicle and a milking parlour building plus some concrete yard areas around the proposed buildings – Figure 3-1.

Figure 3-1 - Proposed development layout

Source: Berrys Surveyors (Development not to scale)

The total impermeable surface generating surface water runoff to be managed within the SWMP will be 3,174m² – Table 9. This value includes both runoff from the livestock cubicle and milking parlour building roofs. Neither the slurry lagoon nor the silage bay will be included in the SWMP as it contains dirty water flows and therefore cannot be mixed with clean runoff. Also, note that any inlet features to collect the surface water runoff from the silage bay would also take fluvial waters into the surface water network and thus reduce the capacity of any storage structure to attenuate surface water runoff. Instead, the surface water runoff from the silage bay and concrete areas will be pumped into the slurry lagoon. In terms of the areas surrounding the milking area and the livestock cubicle, these will be gravel and therefore allow water runoff to soak through.

Unit description	Area (m ²)
Milking parlour roof	1,760
Livestock cubicle roof	1,414
Total	3,174

Table 9 – Impermeable surface areas to be manged by the surface water netw	vork.
Table e imperindable danade areas to be manged by the danade hater net	

The development is situated on a field shown as agricultural land and mainly within Flood Zone 3. Therefore, a detailed flood risk assessment and quantification of flood water volumes displaced must be carried out before any construction.

4. Surface Water Drainage Strategy

4.1 Brief Considerations

The proposed development would increase the impermeable surface area at the site, which in turn would lead to an increase in runoff rates with the potential to increase the risk of flooding away from the site.

This section outlines a surface water management plan, designed to ensure that the proposed development would not lead to an increase in flood risk elsewhere. The proposed agricultural development would include a total of 3,174m² of impermeable surface area generating surface water runoff.

Regional soil mapping shows soils at the site to be *"freely draining"* (Figure 2-10). As discussed in Section 2.8, infiltration testing was undertaken previously at the site to the BRE365 standard which produced an infiltration rate of 0.080m/hr. Taking into consideration the close proximity of the new development at Sheepcote farm to a BRE365 infiltration test location previously conducted, the infiltration rates from a previous development have been adopted.

Although the top priority according to the NPPF is to infiltrate rainfall runoff into the soil, such philosophy was not adopted in the current design in order to prevent fluvial waters from filling the tank in a flood event.

Therefore, the design philosophy was to attenuate the surface water runoff flows by means of a buried geo-cellular tank and discharge the outflows into a local brook at a greenfield runoff rate. In order to prevent high water table levels from filling the tank in fluvial flood events, the geo-cellular tank would have to be lined with an impermeable membrane.

4.2 Climate Change Allowances

The Environment Agency and NPPF require a consideration of the impacts of climate change on the flood risk for any proposed development. In February 2016, the Environment Agency updated the climate change allowances required in Flood Risk Assessments (Environment Agency, 2016); this advice updates previous climate change allowances to support the NPPF (DCLG, 2012). The Environment Agency (2016) states,

"Making an allowance for climate change in your flood risk assessment will help to minimise vulnerability and provide resilience to flooding and coastal change in the future. The climate change allowances are predictions of anticipated change for:

- Peak river flow by river basin district
- Peak rainfall intensity
- Sea level rise
- Offshore wind speed and extreme wave height."

As potential risks from flooding through sea level rise and extreme wave height do not impact this site, only allowances for peak river flows and peak rainfall intensities will be considered. For rainfall, Table 10 shows anticipated increases in peak rainfall intensity at central and upper end allowances. The Environment Agency recommends assessment of both central and upper end allowances for flood risk assessments and therefore a climate change allowance of 40% was adopted within the design.

	Total potential change anticipated					
Allowance category	2015 to 2039	2040 to 2069	2070 to 2115			
Upper end	10%	20%	40%			
Central	5%	10%	20%			

Table 10: Allowance categories for total anticipated change for rainfall

Source: Environment Agency 2016

As the Environment Agency classifies the development as *'less vulnerable'*, allowances for climate change should consider central and higher allowances. The River Wye basin falls under the Severn basin district, which means that there is a 50% chance that river flows increase by more than 35% by 2115. Table 11 indicates the allowances which should be given to peak river flows in the Severn basin.

Table 11 – Peak Flows Allowance to climate change in the Severn basin

	Total potential change anticipated				Total potential change anticipated				
Allowance category	2015 to 2039	2040 to 2069	2070 to 2115						
Upper end	25%	40%	70%						
Higher central	15%	25%	35%						
Central	10%	20%	25%						

Source: Environment Agency 2016

4.3 Pre-development greenfield runoff rates

The estimation of peak rates of pre-development runoff (i.e. Greenfield runoff) has previously used the IH 124^[1] (Marshall and Bayliss) method. This method uses parameters related to catchment and soil characteristics to establish a peak rate of runoff. More recently, the rainfall runoff modelling approach of ReFH version 2 (ReFH2) has been used. This method was found in work by the CEH (2015) to give a closer match to observed peak rates of runoff, and also provides a full hydrograph, rather than simply the peak flow derived by the former method. Following additional research and testing, ReFH2 was released in 2015. In particular, and with significance for the current site, ReFH2 incorporates a set of adjustments for "plot scale" conditions. These adjustments address the use of models and data for catchments to the scale of individual development plots. This is important, since such plots tend to be much smaller than topographic catchments.

ReFH2 runoff calculations reference a subset of catchment descriptors, associated with the site (SO 26046 46734) and generated by the FEH web service. In order to achieve the "plot-scale" adjustments required to generate an accurate greenfield runoff rate for the site, the AREA descriptor for the catchment was changed from approximately 0.77km² to 0.5 km², in order to calibrate several routing and base flow parameters. The AREA descriptor was then changed to 0.007918km², the total proposed impermeable surface area at the site. these adjustments enabled the generation of greenfield runoff hydrographs in I/s and the volumes in m³ fort the site.

The peak greenfield runoff rates for the proposed impermeable surface area at the site are shown in Table 8, at the 1:2, 1:30 and 1:100 year rainfall events, determined using ReFH2.

^[1] IH124: Institute of Hydrology Report No. 124 Flood Estimation for Small Catchments, June 1994

4.4 Outline of the surface water management plan

As summarised before, the proposed impermeable surface area from roofs at the site is 3,174m². Runoff from this area is to be managed with a buried attenuation tank located to the east of the proposed site. Note that the drainage system in place should direct surface water runoff directly from gutters along the edges of the roofs into the geo-cellular tank, without allowing any fluvial waters to get into the system in the event of a fluvial flood.

Furthermore, any surface water runoff from rain falling on top of the silage bay and concrete areas will be pumped into the slurry lagoon to avoid any ground level inlets from conveying fluvial waters into the attenuation tank, in the event of fluvial flooding.

Analysis was undertaken in order to size the attenuation tank required to restrict outflow rates to no greater than greenfield runoff rates.

The dimensions of the attenuation structure were analysed using the Source Control module, which integrates the industry leading Micro Drainage software. The following conservative assumptions and design parameters were adopted within the Source Control module.

- Rainfall intensity was obtained using the FEH methodology and increased by 40%, the *upper end* allowance for climate change over the 60 year design life of the proposed agricultural development as described in section 4.2 of the report;
- The proposed impermeable surface area from roofs milking yard and livestock cubicle – is 3,174m².
- 100% of the runoff from the proposed impermeable surfaces is directed to the underground geo-cellular storage;
- A 95% void ratio was modelled, corresponding to a geo-cellular storage;
- Outflows are controlled by set of two *hydro-brakes*. The lower *hydro-brake* is supposed to work for lower return periods – typically up to the 1 in 30 year RP – and the *hydrobrake* set at a higher level is set to work for rainfall events above the 1 in 30 year RP;
- The geo-cellular attenuation structure was modelled as an *zero-infiltration* feature, in order to replicate the presence of an impermeable liner around the bottom and sides of the tank. This is to prevent fluvial water from filling the tank in case of a fluvial flood event;
- The controlled outflow from the attenuation geo-cellular tank would be discharged south into an existing stream.

Using an iterative approach to vary the attenuation geo-cellular tank area and outflow control structures, a range of attenuation designs was assessed. The software was used to analyse the response of the design to the 1 in 2, 30 and 100 year plus 40% climate change rainfall events. The design imperatives were that outflow rates should ideally be less than greenfield runoff rates scaled to the impermeable surface area, and as low as possible within the constraints of the site. Also, the outflow rates would have to be such that the *hydro-brake* outlet diameter is large enough not to put the design at risk of blockage. It was found that an attenuation geo-cellular tank with the specification summarised in Table 12, combined with a *hydro-brake* flow control with the specification summarised in Table 13 is able to cope with the surface water runoff from the site. The outflow and overflow control specifications are reproduced in Appendix C.

Hydro-Logic Page 19

Table 12 – Attenuation tank specification

Structure	Stormblock Optimum	
Base Area	480 m ² (10m x 48m)	
No. blocks	750	
Depth	660mm	

 Table 13 – Hydro-Brake Outflow controls specification

Overall Control	Complex
Control No1	Hydro-Brake Optimum
Design head	200mm
Design flow	1.3l/s
Invert Level *	0.000mm above the bottom of the tank
Control No2	Hydro-Brake Optimum
Design head	300mm
Design flow	3.2l/s
Invert Level *	300mm above the bottom

* Above the bottom of the tank

The performance of the attenuation design and the full set of results produced by the Micro Drainage Source Control are shown in Appendix C. Furthermore, the comparison between the greenfield runoff rates and the outflows from the tank for the different return periods is show in Table 14.

Table 14 – Comparison	between	outflow	runoff	rates	from	the	geo-cellular	tank	and	the
greenfield runoff rates.										

Return period (years)	Greenfield runoff rate (l/s)	Post-development runoff rate discharging into the brook (l/s)
2	1.4	1.3
30	3.7	3.5
100	5.3	5.1

The maximum water depth in the tank resulting from the 1 in 100 year plus 40% climate change design storm is 451mm, ensuring a safety freeboard of 209mm for the residual risks.

Other combinations of basin dimensions and outflow controls are of course possible, but this analysis illustrates one way in which the necessary attenuation can be achieved. A different shape is of course possible, provided the area and volume of the tank remain unchanged.

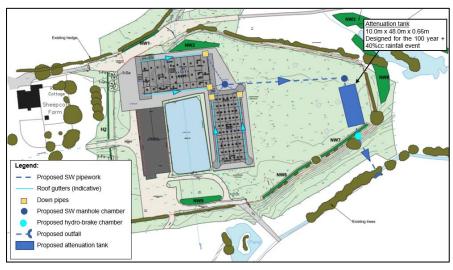


Figure 4-1 – Layout of the proposed Surface Water Management Plan

4.5 Surface water drainage of silage bay and slurry lagoon

Due to the nature of operations in both the slurry lagoon and the silage bay, these features will not be covered with a roof. Therefore, the rainfall within the footprint of the lagoon will be mixed with slurry, which will in turn have to be disposed off-site.

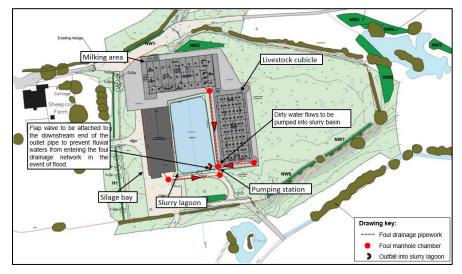

In what concerns the silage bay, any inlet feature to take surface water runoff from the silage bay into the surface water network, would allow fluvial waters to also fill the attenuation tank. Therefore, this would reduce the attenuation tank capacity to store surface water runoff in the event of fluvial flooding. This being said, the surface water runoff generated by the silage bay will be pumped into the slurry lagoon as per The surface water runoff from the silage bay will then be mixed with any operation dirty water flows from both the milking parlour and the livestock cubicle buildings. According to Appendix E, it is estimated that a 33.0m x 65.5m slurry lagoon will suffice to store flows from 1) any livestock operations, 2) surface water runoff from the silage bay, 3) any water from washing activities and 4) surface water from the concrete surfaces.

Figure 4-2.

The surface water runoff from the silage bay will then be mixed with any operation dirty water flows from both the milking parlour and the livestock cubicle buildings. According to Appendix E, it is estimated that a 33.0m x 65.5m slurry lagoon will suffice to store flows from 1) any livestock operations, 2) surface water runoff from rainfall from the silage bay, 3) any water from washing activities and 4) surface water from the concrete surfaces.

Figure 4-2 – Dirty water drainage from milking parlour, livestock cubicle and surface water drainage from silage bay and concrete surfaces.

4.6 Residual Risks

Residual risks for the scheme include the occurrence of rainstorms in excess of the 1 in 100 year plus 40% climate change design storm, and a blockage of the attenuation system. Blockages of the drainage system should be avoidable if appropriate maintenance procedures are followed.

The 1 in 100 year plus 40% climate change design storm would result in a maximum water level of 451mm in the attenuation structure(s). If an exceedance rainfall event occurred the capacity of the attenuation structures could be exceeded leading to surface water flooding. However, the design of the tank was tested for the 1 in 500 years plus 40% climate change storm, and the water level was shown to reach a maximum level of 550mm – see Appendix C.

Figure 4-3 provides guidance on the type of operational and maintenance requirements that may be appropriate. The list of actions is not exhaustive, and some actions may not always be required. The responsibility for maintaining any surface water features would be with the property owners and occupiers.

Maintenance schedule	Required action	Typical frequency		
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually		
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly		
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter, remove and replace surface infiltration medium as necessary.	Annually		
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required		
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required		
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually		
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as require		

Figure 4-3 – Operation and Maintenance

Source: CIRIA SuDS Manual 2015

5. Conclusions

This Surface Water Management Plan determined that:

- The site is shown to be in Flood Zone 3b, at risk of flooding less than 1 in 20 annual probability, within River Wye floodplain. However, it is believed that the development benefits from the fact that 1) it is an extension of the existing development and 2) no additional people will be put at risk as the development only includes agricultural buildings;
- The River Wye *Product 4* shows the site to be affected by the 1 in 20 year + 35% climate change fluvial flood event. Within this report, the original modelled flood levels have been extrapolated to determine the flood levels associated with the 35% climate change allowances, as required by Environment Agency guidelines;
- The site's elevation varies between approximately 68.5mAOD and 67.5mAOD, slightly below the 69.15mAOD contour line bordering flood zone 3b;
- The proposed surface water network will drain a total of 3,174m² from the roof of milking parlour and livestock cubicle buildings. The remaining areas around the milking yard and livestock cubicle will be gravel and therefore allow water runoff to be soaked into the ground;
- In order to not increase flood risk elsewhere in the catchment, a geo-cellular tank, with suitable outflow controls, was designed to attenuate the post-development runoff rates from the 3,174m² impermeable areas – livestock cubicle and milking parlour roofs;
- The underground attenuation tank, with a basal area of 480m², with outflows being controlled by a set of two hydro-brake flow controls. The proposed location for the attenuation tank is the east of the proposed development. The controlled outflows from the attenuation tank would be discharged into the existing stream to the south of the site at a rate no greater than the greenfield runoff rates. The water level in the basin would reach a maximum depth of 451mm in the 1:100 year rainstorm with allowance for climate change;
- The responsibility for maintaining any surface water and dirty water features will be with the property owners and occupiers;
- Dirty water from washing down the milking parlour and cubicle buildings, rainwater from the concrete surfaces around the buildings and rainwater from the silage bay will be pumped into the slurry lagoon;
- According to CSCX design, the slurry lagoon has capacity to store 4 months' worth of slurry from up to 350 cows, wash down water from the milking parlour and cubicle buildings and surface water from the silage bay and concrete surfaces.
- The slurry lagoon crest level is set above the 1:100 year +35%CC fluvial flood level.

6. References

Author	Date	Title/Description
Centre for Ecology and Hydrology.	2018	The Flood Estimation Handbook Web Service. Available from: <u>https://fehweb.ceh.ac.uk/</u>
CIRIA	2015	C753, The SuDS Manual.
Cranfield University	2018	Cranfield University Soil Map. Available from: <u>http://www.landis.org.uk/soilscapes/</u>
DCLG	Mar 2012a	National Planning Policy Framework.
DCLG	Mar 2012b	Technical Guidance to the National Planning Policy Framework.
DEFRA	Dec 2011	National Standards for sustainable drainage systems. Available at: <u>https://assets.publishing.service.gov.uk/govern</u> <u>ment/uploads/system/uploads/attachment_dat</u> <u>a/file/82421/suds-consult-annexa-national- standards-111221.pdf</u>
Environment Agency	2018	Flood Risk Assessments: Climate Change Allowances. Available at: <u>https://www.gov.uk/guidance/flood-risk-</u> <u>assessments-climate-change-allowances</u>
Environment Agency/ UK Government	2018	Interactive Flood Maps. Available from: <u>https://flood-warning-</u> information.service.gov.uk/long-term-flood-risk/
Environment Agency/ UK Government	2018	Interactive Flood Map for planning. Available at: <u>https://flood-map-for-</u> planning.service.gov.uk/
Herefordshire Council	2009	Herefordshire Council – Strategic Flood Risk Assessment. Available at: <u>https://www.herefordshire.gov.uk/downloads/d</u> <u>ownload/180/strategic_flood_risk_assessment</u>
Herefordshire Council	2015	Herefordshire Local Plan Core Strategy 2011 – 2031. Available at: <u>https://www.herefordshire.gov.uk/media/57838</u> <u>38/core_strategy_web_version_mar_2013.pdf</u>
Sheepcote Farm FRA	2015	FRA/SWMP for previous development at Sheepcote Farm, where infiltration test results were obtained.

Appendix A Check List for NPPF Guidance on Flood Risk¹

1 Development description and location

1a. What type of development is proposed and where will it be located?

A location plan at an appropriate scale should be provided with the FRA, or cross referenced to the main application when it is submitted.
 Section 2.1

1b. What is its vulnerability classification?

• Vulnerability classifications are provided in Table 2, NPPF Technical Guide

Section 2.2

1c. Is the proposed development consistent with the Local Development Documents? Section 2.4

1d. Please provide evidence that the Sequential Test or Exception Test has been applied in the selection of this site for this development type?

- Evidence is required that the Sequential Test has been used in allocating the proposed land use proposed for the site and that reference has been made to the relevant Strategic Flood Risk Assessment (SFRA) in selecting development type and design (See paragraphs 100-104, NPPF and paragraphs 3-5, NPPF Technical Guide). Your Local Planning Authority planning officer should be able to provide site-specific guidance on this issue.
- Where use of the Exception Test is required, evidence should be provided that both elements of this test have been passed (see paragraphs 102, NPPF and paragraphs 4-5, NPPF Technical Guide). Your Local Planning Authority planning officer should be able to provide site-specific guidance on this issue.
 Section 2.4

1e. [Particularly relevant to minor developments (alterations & extensions) & changes of use] Will your proposal increase overall the number of occupants and/or users of the building/land; or the nature or times of occupation or use, such that it may affect the degree of flood risk to these people?

2. Definition of the flood hazard

2a. What sources of flooding could affect the site? (see paragraph 2, NPPF Technical Guide).

• This may include hazards such as the sea, reservoirs or canals, which are remote from the site itself, but which have the potential to affect flood risk (see Section 1 of the NPPF Practice Guide).

Section	2.4	

2b. For each identified source, describe how flooding would occur, with reference to any historic records wherever these are available.

- An appraisal of each identified source, the mechanisms that could lead to a flood occurring and the pathways that flood water would take to, and across, the site.
- Inundation plans, and textural commentary, for historic flood events showing any information available on the mechanisms responsible for flooding, the depth to which the site was inundated, the velocity of the flood water, the routes taken by the flood water and the rate at which flooding occurred.

Section 2.5

2c. What are the existing surface water drainage arrangements for the site?

• Details of any existing surface water management measures already in place, such as sewers and drains and their capacity.

3. Probability

3a Which flood zone is the site within?

• The flood zones are defined in Table 2, NPPF Technical Guide.

Sections 2.5

3b If there is a Strategic Flood Risk Assessment covering this site, what does it show?

• The planning authority can advise on the existence and status of the SFRA.

¹<u>http://planningguidance.planningportal.gov.uk/blog/guidance/flood-risk-and-coastal-change/site-specific-flood-risk-assessment-checklist/</u>

Section 2.5
3c What is the probability of the site flooding taking account of the contents of the SFRA
and of any further site-specific assessment? This may need to include
 a description of how any existing flood risk management measures affect the probability of a flood occurring at the site FRA Pro-forma
 supporting evidence and calculations for the derivation of flood levels for events with a range of annual probability
 □inundation plans of, and cross sections through, the existing site showing flood extents and levels associated with events with a range of annual probability
 □a plan and description of any structures which may influence the probability of a flood occurring at the site. This may include bridges, pipes/ducts crossing a watercourse, culverts, screens, embankments or walls, overgrown or collapsing channels and their likelihood to choke with debris.
 Idetails of any modelling studies completed to define the exiting degree of flood risk Section 2.5
3d What are the existing rates and volumes of run-off generated by the site?
 This should generally be accompanied by calculations of run-off rates and volumes from the existing
site for a range of annual probability events (see Section 21 of the NPPF Practice Guide).
Section 2.9
4. Climate change
How is flood risk at the site likely to be affected by climate change?
 Paragraphs 11-15, of the NPPF Technical Guide provide guidance on how to assess the impacts of climate change.
Section 4.2
5. Detailed development proposals
Where appropriate, are you able to demonstrate how land uses most sensitive to flood
damage have been placed in areas within the site that are at least risk of flooding, including providing details of the development layout?
Reference should be made to vulnerability classification, Table 2 of the NPPF Technical Guide.
 Section 4 of the NPPF Practice Guide provide guidance on how the sequential approach can be used to inform the lay-out of new development sites.
Section 3
6. Flood risk management measures
How will the site be protected from flooding, including the potential impacts of climate change, over the development's lifetime?
 This should show that the flood risk management hierarchy has been followed and that flood defences are a necessary solution. This should include details of any proposed flood defences, access/egress arrangements, site drainage systems (including what consideration has been given to the use of sustainable drainage systems) and how these will be accessed, inspected, operated and maintained over the lifetime of the development. This may need to include details of any modelling work undertaken in order to derive design flood levels for the development, taking into account the presence of any new infrastructure proposed.
Section 4.4
7. Off site impacts
7a How will you ensure that your proposed development and the measures to protect your
site from flooding will not increase flood risk elsewhere? This should be over the lifetime of the development taking climate change into account. The assessment may
need to include:
 Details of the design basis for any mitigation measures (for example trash screens, compensatory flood storage works and measures to improve flood conveyance). A description of how the design quality of these measures will be assured and of how the access, operation, inspection and maintenance issues will be managed over the lifetime of the development. Evidence that the mitigation measures will work, generally in the form of a hydrological and hydraulic modelling report.
 An assessment of the potential impact of the development on the river, estuary or sea environment and fluvial/coastal geomorphology. A description of how any impacts will be mitigated and of the likely longer-term sustainability of the proposals.

7b How will you prevent run-off from the completed development causing an impact elsewhere?

• Evidence should be provided that drainage of the site will not result in an increase in the peak rate or in the volumes of run-off generated by the site prior to the development proceeding. Section 4.4

8. Residual risks

8a What flood-related risks will remain after you have implemented the measures to protect the site from flooding?

• Guidance on residual risks is provided in Section 14 of the NPPF Practice Guide.

Section 4.6

8b How, and by whom, will these risks be managed over the lifetime of the development?

 Reference should be made to flood warning and evacuation procedures, where appropriate, and to likely above ground flow routes should sewers or other conveyance systems become blocked or overloaded. This may need to include a description of the potential economic, social and environmental consequences of a flood event occurring which exceeds the design standard of the flood risk management infrastructure proposed and of how the design has sought to minimize these – including an appraisal of health and safety issues.

Section 4.6

Appendix B - Infiltration Testing Results from Sheepcote Farm

Infiltration testing was undertaken on the site by Michael Pugh in September 2015. Infiltration testing is required to be completed to the BRE365 standard, in which trial pits are excavated, filled with water and the time taken for the pit to drain from 75% to 25% full is measured. This is required to be repeated 3 times in each pit. 1 trial pit was excavated to a depth of 3 m on site and infiltration testing was repeated 3 times (Figure B-1). Table B-1 shows the raw infiltration data from the 3 tests and the calculated infiltration rates for the site are shown in Table B-2. The infiltration rate at Sheepcote Farm was found to be 0.08 m/h which suggests that similar rates will occur at the new development, approximately 200m away. Managing surface water runoff via infiltration methods is therefore considered a viable option.

Figure A-1 Infiltration Testing at Sheepcote Farm

Table A-1 Results from Infiltration Tests 1 to 3

Trial Pit Dimensio	ns
Width	0.3 m
Length	2.5 m
Height	3.0 m

Test	1	Tes	st 2	Tes	st 3
Start Time	7:00 am	Start Time	9:00 am	Start Time	1:00 pm
Pit Empty	10:00 am	Pit Empty	12:00am	Pit Empty	4:00 pm
Time from		Time from		Time from	
25% to 75%	90	25% to 75%	90	25% to 75%	90
Empty (mins)		Empty		Empty	

Table A-2 Infiltration Rate Results for Trial Tests 1 to 3

Infiltration Test	Infiltration Rate (m/s)	Infiltration Rate (m/h)
1	2.28E-05	0.08
2	2.28E-05	0.08
3	2.28E-05	0.08

Appendix C – Micro-drainage Outputs

Surface water outputs

1 in 2 years storm plus 40% climate change

Hydrologic Services							Page 1
Unit 6, Commerce Park		Shee	epcote	Farm			
Brunel Way		Surf	Eace Wa	ter Manad	rement	Plan	4
Theale RG7 4AB		K065		-			
ate 07/02/2019				u Tana Ci	1		— Micro
			-	y Joao Gi			Drainag
Tile Geocellular tank	2HB.src		-	(self ch		ц⊥у)	Brainag
Innovyze		Sour	cce Con	trol 2017	7.1		
Summary	/ of Resu	lts for	2 year	Return P	eriod	(+40%)	
	Hal	f Drain Ti	me : 61	6 minutes.			
Storm	Max M	ax M	ax	Max	Max	Max	Status
Event				Control E (Status
Evenc		-	/s)		(1/s)	(m ³)	
	(, (.		, 3)	(1/3)	(1/3)	(
15 min Summer	0.056 0.	056	0.0	0.9	0.9	25.6	O K
30 min Summer	0.072 0.	072	0.0	1.2	1.2	32.8	O K
60 min Summer			0.0	1.3		40.4	
120 min Summer			0.0	1.3	1.3		
180 min Summer			0.0	1.3		62.9	
240 min Summer			0.0	1.3	1.3		
360 min Summer 480 min Summer			0.0	1.3	1.3		
600 min Summer			0.0	1.3	1.3		
720 min Summer			0.0	1.3	1.3		
960 min Summer			0.0	1.3	1.3		
1440 min Summer			0.0	1.3	1.3		
2160 min Summer	0.178 0.	178	0.0	1.3	1.3	81.2	ОК
2880 min Summer	0.168 0.	168	0.0	1.3	1.3	76.8	ОК
4320 min Summer	0.148 0.	148	0.0	1.3	1.3	67.4	O K
5760 min Summer			0.0	1.3		59.4	
7200 min Summer			0.0	1.3		53.2	
8640 min Summer	0.106 0.	106	0.0	1.3	1.3	48.4	O K
	Storm	Rain	Flooded	l Discharge	Time-P	eak	
	Event	(mm/hr)	Volume	Volume	(mins	3)	
			(m³)	(m³)			
15	min Summe	er 43.701	0.0	21.2		19	
- +	min Summe					33	
	min Summe		0.0			62	
	min Summe		0.0			122	
	min Summe		0.0			182	
	min Summe	er 8.377	0.0	76.4		242	
240	min Summe	er 6.489	0.0	89.0		360	
	intii Sunnie	5 000	0.0	98.6		458	
360 480	min Summe		0.0			E 4 0	
360 480 600	min Summe min Summe	er 4.645	0.0			512	
360 480 600 720	min Summe min Summe min Summe	er 4.645 er 4.104	0.0	112.5		576	
360 480 600 720 960	min Summe min Summe min Summe min Summe	er 4.645 er 4.104 er 3.354	0.0 0.0 0.0	112.5 122.3		576 704	
360 480 600 720 960 1440	min Summe min Summe min Summe min Summe min Summe	er 4.645 er 4.104 er 3.354 er 2.510	0.0 0.0 0.0 0.0	112.5 122.3 136.0		576 704 980	
360 480 600 720 960 1440 2160	min Summe min Summe min Summe min Summe min Summe min Summe	er 4.645 er 4.104 er 3.354 er 2.510 er 1.870	0.0 0.0 0.0 0.0	112.5 122.3 136.0 158.3	1	576 704 980 388	
360 480 600 720 960 1440 2160 2880	min Summe min Summe min Summe min Summe min Summe	er 4.645 er 4.104 er 3.354 er 2.510 er 1.870 er 1.523	0.0 0.0 0.0 0.0	112.5 122.3 136.0 158.3 171.7	1	576 704 980	

0.0 194.2 0.0 218.3 0.0 238.8

0.0

©1982-2017 XP Solutions

258.3

3344 4040

4760

4320 min Summer 1.154 5760 min Summer 0.959 7200 min Summer 0.840

8640 min Summer 0.758

Hydrologic Services		Page 2
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	
Theale RG7 4AB	K0657b	Micro
Date 07/02/2019	Designed by Joao Gil	Drainage
File Geocellular tank 2HB.srcx	Checked by (self check only)	Diamaye
Innovyze	Source Control 2017.1	

10080 15 30 60 120	min Wi min Wi	inter	(m) 0.098	(m)	Infiltration (1/s)	(1/s)	Outflow (1/s)	(m ³)	
15 30 60 120	min Wi min Wi	inter	0.098				(1/s)	(m³)	
15 30 60 120	min Wi min Wi	inter		0.098	0.0				
30 60 120	min Wi		0.063		0.0	1.3	1.3	44.6	O F
60 120		inter	0.000	0.063	0.0	1.1	1.1	28.6	O F
120	min Wi	Incer	0.081	0.081	0.0	1.3	1.3	36.8	O F
		inter	0.100	0.100	0.0	1.3	1.3	45.5	O F
180	min Wi	inter	0.135	0.135	0.0	1.3	1.3	61.3	O F
100	min Wi	inter	0.156	0.156	0.0	1.3	1.3	71.3	0 1
240	min Wi	inter	0.171	0.171	0.0	1.3	1.3	78.2	0 1
360	min Wi	inter	0.189	0.189	0.0	1.3	1.3	86.3	O F
480	min Wi	inter	0.200	0.200	0.0	1.3	1.3	91.0	0 1
600	min Wi	inter	0.205	0.205	0.0	1.3	1.3	93.5	O F
720	min Wi	inter	0.208	0.208	0.0	1.3	1.3	94.7	0 1
960	min Wi	inter	0.210	0.210	0.0	1.3	1.3	95.7	O F
1440	min Wi	inter	0.206	0.206	0.0	1.3	1.3	94.2	O F
2160	min Wi	inter	0.192	0.192	0.0	1.3	1.3	87.8	O F
2880	min Wi	inter	0.176	0.176	0.0	1.3	1.3	80.3	O F
4320	min Wi	inter	0.141	0.141	0.0	1.3	1.3	64.2	O F
5760	min Wi	inter	0.112	0.112	0.0	1.3	1.3	51.0	O F
7200	min Wi	inter	0.092	0.092	0.0	1.3	1.3	41.9	O F
8640	min Wi	inter	0.079	0.079	0.0	1.3	1.3	36.2	O F

	Storm	Rain	riooded	Discharge	Time-Peak
	Event	(mm/hr)	Volume	Volume	(mins)
			(m ³)	(m ³)	
10080	min Summer	0.699	0.0	276.8	5448
15	min Winter	43.701	0.0	24.2	18
30	min Winter	28.453	0.0	32.6	33
60	min Winter	18.029	0.0	45.3	62
120	min Winter	12.515	0.0	63.7	120
180	min Winter	9.943	0.0	76.2	178
240	min Winter	8.377	0.0	85.8	236
360	min Winter	6.489	0.0	99.9	350
480	min Winter	5.388	0.0	110.6	460
600	min Winter	4.645	0.0	119.1	566
720	min Winter	4.104	0.0	126.1	658
960	min Winter	3.354	0.0	137.0	748
1440	min Winter	2.510	0.0	152.0	1054
2160	min Winter	1.870	0.0	177.5	1512
2880	min Winter	1.523	0.0	192.5	1960
4320	min Winter	1.154	0.0	217.9	2764
5760	min Winter	0.959	0.0	244.7	3464
7200	min Winter	0.840	0.0	267.6	4112
8640	min Winter	0.758	0.0	289.6	4752
	©19	82-2017	XP Sol	utions	

Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max Max Max Max Max	~~~~ :ro inage
Theale RG7 4AB K0657b Date 07/02/2019 Designed by Joao Gil File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max<	
Date 07/02/2019 Designed by Joao Gil File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max <thm< td=""><td></td></thm<>	
Date 07/02/2019 Designed by Joao Gil File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max Max Max Max Max Max Max Max	
File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max Max Max Max Max Status	inage
Innovyze Source Control 2017.1 Summary of Results for 2 year Return Period (+40%) Storm Max Max Max Max Max Status	
Summary of Results for 2 year Return Period (+40%) Storm Max Max Max Max Max Max Max Status	
Storm Max Max Max Max Max Max Status	
Event Level Depth Infiltration Control Σ Outflow Volume	
(m) (m) (1/s) (1/s) (m ³)	
10080 min Winter 0.074 0.074 0.0 1.2 1.2 33.5 O K	
Storm Rain Flooded Discharge Time-Peak	
Storm Rain Flooded Discharge Time-Peak Event (mm/hr) Volume Volume (mins) (m ³) (m ³)	
10080 min Winter 0.699 0.0 310.6 5440	
©1982-2017 XP Solutions	

Hydrologic Services		Page 4
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	Y .
Theale RG7 4AB	K0657b	1 mm
Date 07/02/2019	Designed by Joao Gil	Micro
		Drainage
File Geocellular tank 2HB.srcx	Checked by (self check only)	Brainage
Innovyze	Source Control 2017.1	
Ra	ainfall Details	
Rainfall Mod		
Return Period (year FEH Rainfall Versi		
	on GB 326000 246550 SO 26000 46550	
Data Ty		
Summer Stor		
Winter Stor		
Cv (Summe		
Cv (Winte		
Shortest Storm (mir Longest Storm (mir		
Climate Change		
Crimate change	0.01	
Ti	me Area Diagram	
Tot	cal Area (ha) 0.318	
r	'ime (mins) Area	
F.	rom: To: (ha)	
	0 4 0.318	
©1982	-2017 XP Solutions	

			Page 5
Sheepcote	Farm		
-		nt Plan	
	acer Hanageme	inc rian	1 mm
	has Tanan Cill		– Micro
-	-		Drainage
	-	c only)	Didiridge
Source Co	ntrol 2017.1		
Model Deta	ils		
)nline Cover	Level (m) 1.800)	
ar Storage	Structure		
: Base (m/hr)	0.00000 P		
ea (m²) Dept	th (m) Area (m²)	Inf. Area	(m²)
0.0	0.661 0.0)	0.0
ex Outflow	Control		
ro-Brake® (Optimum		
	MD-SHE-0064-130		
2			
	Minimise upstro		
Application		Surface	
p Available		Yes	
		100	
ameter (mm)		1200	
ow (1/s)	Control Point:	s Head	(m) Flow (1/s)
1.3	Kic	ck-Flo® 0.	160 1.2
1.3 Mean	n Flow over Head	l Range	- 1.0
en based on	the Head/Discha	rge relation	ship for the
		2	-
w (1/s) Dept	th (m) Flow (1/s	s) Depth (m)	Flow (l/s)
2.4			5.2
			5.5
2.9		.0 5.000	5.9
2.1	2.000 4.	.2 5.500	6.1
3 3	3 000 4	5 6 000	6 4
3.3 3.5		.5 6.000 .9 6.500	6.4 6.7
	Surface W K0657b Designed Checked b Source Co Model Deta Online Cover ar Storage ert Level (m) Base (m/hr) Side (m/hr) Side (m/hr) Cea (m ²) Dept 0.0 0.0 ex Outflow ro-Brake® (t Reference gn Head (m) Flow (1/s) Flush-Flo ^m Objective Application p Available ameter (mm) t Level (m) ameter (mm) t Level (m) ameter (mm) ow (1/s) Dept Now (1/s) Dept	K0657b Designed by Joao Gil Checked by (self check Source Control 2017.1 Model Details Online Cover Level (m) 1.800 ar Storage Structure ert Level (m) 0.000 Safety : Base (m/hr) 0.00000 rea (m²) Depth (m) Area (m²) 0.0 0.661 0.0 0.661 0.0 0.661 0.0 0.661 0.0 0.661 0.0 0.661 0.0 0.661 0.0 0.661 0.0<	Surface Water Management Plan K0657b Designed by Joao Gil Checked by (self check only) Source Control 2017.1 Model Details Online Cover Level (m) 1.800 ar Storage Structure Prt Level (m) 0.000 Safety Factor 2.0 Ease (m/hr) 0.0000 Porosity 0.95 Side (m/hr) 0.0000 rea (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.0 0.661 0.0 0.0 0.661 0.0 ex Outflow Control ro-Brake@ Optimum t Reference MD-SHE-0064-1300-0200-1300 gn Head (m) 0.200 Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface p Available Yes ameter (mm) 64 t Level (m) 0.000 ameter (mm) 100 ameter (mm) 100 ameter (mm) 100 ameter (mm) 100 ameter (mm) 100 ameter (mm) 1200 pw (1/s) Control Points Head 1.3 Kick-Flo@ 0. 1.3 Mean Flow over Head Range Pen based on the Head/Discharge relation should another type of control device ot a these storage routing calculations wil pw (1/s) Depth (m) Flow (1/s) Depth (m) 2.4 2.000 3.7 2.200 3.9 4.500

Hydrologic Services						Page 6		
Unit 6, Commerce Park		Sheepo	cote Farm					
Brunel Way		Surfac	ce Water	Managemen	t Plan	Mr.		
Theale RG7 4AB		K0657b	0			Misso		
Date 07/02/2019		Design	ned by Jo	ao Gil		– Micro		
File Geocellular tank	2HB.srcx	-	-	lf check	onlv)	Drainage		
Innovyze			e Control		1,			
	Hyc	dro-Brak	e® Optimu	<u>1m</u>				
Depth (m) Flow (1/s)	Depth (m) Fl	low (1/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)		
7.000 6.9		7.4						
7.500 7.2	8.500	7.6	9.500	8.1				
	Hyc	dro-Brak	e® Optimu	<u>1m</u>				
	11-	it Deferre	ND CUE	-0094-3200-	0200 2200			
		ign Head		-0094-3200-	0.300-3200			
		n Flow (l			3.2			
		Flush-F		-	alculated			
		2		ise upstrea	m storage Surface			
	Su	Applicat mp Availa			Surface Yes			
		iameter (94			
	Inve	rt Level	(m)		0.300			
	Outlet Pipe D				150			
Sugges	ted Manhole D	lameter (mm)		1200			
Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/s)								
						(m) 110w (1/3)		
Design Point (Calculated		3.2		Kick-	-Flo® 0.	239 2.9		
Design Point (Calculated Flush-Flo			Mean Flow		-Flo® 0.			
-	™ 0.136	3.2		Kick- over Head H	-Flo® 0. Range	- 2.9 - 2.5		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as	0.136 ations have b specified.	3.2 Deen based Should an	d on the He Nother type	Kick- over Head F ad/Discharg of control	-Flo® 0. Range ge relation device ot	239 2.9 - 2.5 ship for the her than a		
Flush-Flo The hydrological calcul	0.136 ations have b specified.	3.2 Deen based Should an	d on the He Nother type	Kick- over Head F ad/Discharg of control	-Flo® 0. Range ge relation device ot	239 2.9 - 2.5 ship for the her than a		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as	0.136 ations have b specified. utilised the	3.2 been based Should an en these s	d on the He nother type storage rou	Kick- over Head F ad/Discharg of control ting calcul	-Flo® 0. Range re relation device ot ations wil	239 2.9 - 2.5 ship for the her than a l be invalidated		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0	0.136 ations have b specified. utilised the Depth (m) Fl 1.200	3.2 been based Should an en these s Low (1/s) 6.1	d on the He nother type storage rou Depth (m) 3.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1	0.136 ations have b specified. utilised the Depth (m) Fl 1.200 1.400	3.2 been based Should an en these s Low (1/s) 6.1 6.5	d on the He nother type storage rou Depth (m) 3.000 3.500	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1	-Flo® 0. Range device ot ations wil Depth (m) 7.000 7.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2	0.136 ations have b specified. utilised the Depth (m) Fl 1.200 1.400 1.600	3.2 been based Should an en these s Low (1/s) 6.1 6.5 7.0	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8	-Flo® 0. Range device ot ations wil Depth (m) 7.000 7.500 8.000	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7	0.136 ations have be specified. utilised the Depth (m) Fl 1.200 1.400 1.600 1.800	3.2 been based Should an en these s Low (1/s) 6.1 6.5 7.0 7.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4	-Flo® 0. Range device ot ations wil Depth (m) 7.000 7.500 8.000 8.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3 15.7		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2	0.136 ations have be specified. utilised the Depth (m) Fl 1.200 1.400 1.600 1.800 2.000	3.2 been based Should an en these s Low (1/s) 6.1 6.5 7.0	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8	-Flo® 0. Range device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake@ Optimum as Hydro-Brake Optimum@ be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake@ Optimum as Hydro-Brake Optimum@ be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidated Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake® Optimum as Hydro-Brake Optimum® be 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake@ Optimum as Hydro-Brake Optimum@ be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		
Flush-Flo The hydrological calcul Hydro-Brake@ Optimum as Hydro-Brake Optimum@ be Depth (m) Flow (1/s) 0.100 3.0 0.200 3.1 0.300 3.2 0.400 3.7 0.500 4.0 0.600 4.4 0.800 5.0	<pre>0.136 ations have b specified. utilised the l.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 been based Should an en these s low (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	-Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2.9 - 2.5 ship for the her than a 1 be invalidate Flow (1/s) 14.3 14.8 15.3 15.7 16.2		

Surface water outputs

1 in 30 years storm plus 40% climate change

Hydrologic Services		Page 1
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	L.
Theale RG7 4AB	К0657b	Micro
Date 07/02/2019	Designed by Joao Gil	
File Geocellular tank 2HB.srcx	Checked by (self check only)	Drainage
Innovyze	Source Control 2017.1	

Summary of Results for 30 year Return Period (+40%)

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Ever	nt	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	0.143	0.143	0.0	1.3	1.3	65.0	οк
30	min	Summer	0.188	0.188	0.0	1.3	1.3	85.8	ОК
60	min	Summer	0.237	0.237	0.0	1.4	1.4	108.1	ОК
120	min	Summer	0.283	0.283	0.0	1.5	1.5	128.9	ОК
180	min	Summer	0.308	0.308	0.0	1.6	1.6	140.4	ОК
240	min	Summer	0.323	0.323	0.0	1.9	1.9	147.1	ОК
360	min	Summer	0.334	0.334	0.0	2.2	2.2	152.4	ОК
480	min	Summer	0.336	0.336	0.0	2.3	2.3	153.2	ОК
600	min	Summer	0.336	0.336	0.0	2.3	2.3	153.2	ОК
720	min	Summer	0.336	0.336	0.0	2.3	2.3	153.0	ОК
960	min	Summer	0.334	0.334	0.0	2.2	2.2	152.3	ОК
1440	min	Summer	0.328	0.328	0.0	2.0	2.0	149.7	ОК
2160	min	Summer	0.317	0.317	0.0	1.7	1.7	144.5	ОК
2880	min	Summer	0.305	0.305	0.0	1.6	1.6	138.9	ОК
4320	min	Summer	0.282	0.282	0.0	1.5	1.5	128.4	ОК
5760	min	Summer	0.263	0.263	0.0	1.5	1.5	120.1	ОК
7200	min	Summer	0.250	0.250	0.0	1.4	1.4	113.9	ОК
8640	min	Summer	0.239	0.239	0.0	1.4	1.4	108.9	ОК

Half Drain Time : 587 minutes.

	Storm Event	Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min Summer	110.434	0.0	58.7	19
30	min Summer	73.253	0.0	77.6	34
60	min Summer	46.738	0.0	107.4	64
120	min Summer	28.522	0.0	131.2	124
180	min Summer	21.172	0.0	146.0	182
240	min Summer	17.053	0.0	156.7	242
360	min Summer	12.465	0.0	171.6	360
480	min Summer	9.946	0.0	182.2	458
600	min Summer	8.338	0.0	190.4	508
720	min Summer	7.213	0.0	197.0	570
960	min Summer	5.736	0.0	206.7	696
1440	min Summer	4.149	0.0	213.8	982
2160	min Summer	3.014	0.0	255.8	1428
2880	min Summer	2.418	0.0	273.1	1872
4320	min Summer	1.803	0.0	303.0	2684
5760	min Summer	1.484	0.0	338.5	3512
7200	min Summer	1.292	0.0	368.2	4320
8640	min Summer	1.163	0.0	397.2	5096
	©19	82-2017	XP Sol	Lutions	

Hydrologic Services		Page 2
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	<u>r</u>
Theale RG7 4AB	K0657b	Micro
Date 07/02/2019	Designed by Joao Gil	
File Geocellular tank 2HB.srcx	Checked by (self check only)	Drainage
Innovyze	Source Control 2017.1	

Summary of Results for 30 year Return Period (+40%)

	Storm Event	Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
10080	min Summe	er 0.230	0.230	0.0	1.4	1.4	104.9	ОК
15	min Winte	er 0.160	0.160	0.0	1.3	1.3	72.9	ОК
30	min Winte	er 0.211	0.211	0.0	1.3	1.3	96.2	ОК
60	min Winte	er 0.266	0.266	0.0	1.5	1.5	121.3	ОК
120	min Winte	er 0.317	0.317	0.0	1.8	1.8	144.8	ОК
180	min Winte	er 0.343	0.343	0.0	2.5	2.5	156.5	ОК
240	min Winte	er 0.356	0.356	0.0	3.1	3.1	162.3	ОК
360	min Winte	er 0.364	0.364	0.0	3.4	3.4	166.0	ОК
480	min Winte	er 0.365	0.365	0.0	3.5	3.5	166.2	ΟK
600	min Winte	er 0.366	0.366	0.0	3.5	3.5	166.8	O K
720	min Winte	er 0.366	0.366	0.0	3.5	3.5	166.7	ОК
960	min Winte	er 0.363	0.363	0.0	3.4	3.4	165.5	ΟK
1440	min Winte	er 0.354	0.354	0.0	3.0	3.0	161.4	ΟK
2160	min Winte	er 0.340	0.340	0.0	2.4	2.4	155.2	ΟK
2880	min Winte	er 0.327	0.327	0.0	2.0	2.0	149.3	ΟK
4320	min Winte	er 0.299	0.299	0.0	1.6	1.6	136.2	O K
5760	min Winte	er 0.269	0.269	0.0	1.5	1.5	122.5	O K
7200	min Winte	er 0.245	0.245	0.0	1.4	1.4	111.7	O K
8640	min Winte	er 0.225	0.225	0.0	1.4	1.4	102.8	ОК

	Stor Even		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
10080	min	Summer	1.071	0.0	425.3	5856
15	min	Winter	110.434	0.0	65.8	19
30	min	Winter	73.253	0.0	86.4	33
60	min	Winter	46.738	0.0	120.4	62
120	min	Winter	28.522	0.0	147.0	122
180	min	Winter	21.172	0.0	163.7	178
240	min	Winter	17.053	0.0	175.7	234
360	min	Winter	12.465	0.0	192.5	342
480	min	Winter	9.946	0.0	204.5	390
600	min	Winter	8.338	0.0	213.8	462
720	min	Winter	7.213	0.0	221.2	536
960	min	Winter	5.736	0.0	232.1	692
1440	min	Winter	4.149	0.0	239.1	998
2160	min	Winter	3.014	0.0	286.7	1468
2880	min	Winter	2.418	0.0	306.1	1936
4320	min	Winter	1.803	0.0	338.7	2896
5760	min	Winter	1.484	0.0	379.2	3744
7200	min	Winter	1.292	0.0	412.6	4544
8640	min	Winter	1.163	0.0	445.2	5368
		©198	82-2017	XP Sol	utions	

Hydrologic Services						Page 3
Unit 6, Commerce Park			pcote F			
Brunel Way		Surf	ace Wat	er Manage	ment Plan	L.
Theale RG7 4AB		K065	7b			Micco
Date 07/02/2019		Desi	gned by	Joao Gil		
File Geocellular tank	2HB.srcx	Chec	ked by	(self che	ck only)	Drainage
Innovyze		Sour	ce Cont	rol 2017.	1	
Summary	of Results	for 3	0 year	Return Pe	riod (+40%)	<u>)</u>
Storm	Max Max	Ma	ax	Max 1	Max Max	Status
Event					tflow Volume	
	(m) (m)	(1,	/s)	(1/s) (1	L/s) (m³)	
10080 min Winter	c 0.209 0.209		0.0	1.3	1.3 95.2	ОК
	Storm	Rain		Discharge		
	Event ((mm/hr)	Volume (m³)	Volume (m³)	(mins)	
10080) min Winter	1.071	0.0	476.9	6248	
	A1 00/	0.047	VD 0.1			
	©1982	2-2017	XP Sol	utions		

Hydrologic Services		Page 4
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	4
Theale RG7 4AB	K0657b	Micco
Date 07/02/2019	Designed by Joao Gil	MICLO
File Geocellular tank 2HB.srcx	Checked by (self check only)	Drainage
Innovyze	Source Control 2017.1	
Ra	infall Details	
Rainfall Mod	el FEH	
Return Period (year		
FEH Rainfall Versi	on 2013	
	on GB 326000 246550 SO 26000 46550	
Data Ty	-	
Summer Stor Winter Stor		
Cv (Summe		
Cv (Winte	•	
Shortest Storm (min	s) 15	
Longest Storm (min		
Climate Change	¥ +40	
Ti	me Area Diagram	
Tot	al Area (ha) 0.318	
т	ime (mins) Area	
F	com: To: (ha)	
	0 4 0.318	
A1002	-2017 XP Solutions	
61982	-2017 AF SOLUCIONS	

Hydrologic Se	rvices						Pa	age 5
Unit 6, Comme			Sheep	cote Farm			╎╴	
Brunel Way			-	ce Water Ma	nagement	: Plan		1.
Theale RG7 4A	B		K0657					~~~~
Date 07/02/20				ned by Joao	Gil			Micro
		2000	-	-)rainage
File Geocellu	lar tank	ZHB.Srcx		ed by (self		oniy)		
Innovyze			Source	e Control 2	01/.1			
				Details				
		Storage i	is Online C	over Level (m) 1.800			
		Cell	lular Stor	age Structu	ire			
		on Coeffici	ient Base (r	(m) 0.000 m/hr) 0.00000 m/hr) 0.00000	Por	actor 2.0 osity 0.95		
Dept	th (m) Area	a (m²) Inf	. Area (m²)	Depth (m) Ar	ea (m²) I	Inf. Area	(m²)	
	0.000	480.0	0.0	0.661	0.0		0.0	
	0.660	480.0	0.0					
		Co	mplex Out	Elow Contro	1			
		<u> </u>	lydro-Brak	e® Optimum				
			Unit Refere	nce MD-SHE-00	064-1300-0			
			esign Head			0.200		
		Des	ign Flow (l) Flush-F		Ca	1.3 alculated		
				ive Minimise				
			Applicat		-	Surface		
			Sump Availa			Yes		
		_	Diameter (64		
	Mi - i O		vert Level Diameter (0.000		
		1	Diameter (Diameter (-		1200		
Control P	oints	Head (m)	Flow (1/s)	Control	l Points	Head	(m)	Flow (l/s)
Design Point (C	Calculated) Flush-Flo"		1.3	Mean Flow ov	-Kick er Head R		160	1.2
The hydrologi Hydro-Brake® Hydro-Brake O	Optimum as	specified	e been based . Should an	d on the Head Nother type o	/Discharge f control	e relation device ot	her t	for the than a
Depth (m) H	Flow (1/s)	Depth (m)	Flow (l/s)	Depth (m) Fl	.ow (1/s)	Depth (m)	Flow	/ (1/s)
0.100	1.3	0.800	2.4	2.000	3.7	4.000		5.2
0.200	1.3	1.000	2.7	2.200	3.9	4.500		5.5
0.300	1.6	1.200	2.9		4.0	5.000		5.9
0.400	1.8	1.400	3.1	2.600	4.2	5.500		6.1
0.500	2.0	1.600	3.3	3.000 3.500	4.5 4.9	6.000 6.500		6.4 6.7
0.000	2.1	1.000	3.5	3.500	4.9	0.000		0./
		©1	982-2017	(P Solution	s			

Hydrologic Se	ervices						Page 6
Unit 6, Comme			Sheep	cote Farm			
Brunel Way			Surfa	ce Water 1	Managemen	t Plan	4
Theale RG7 4A	AB		K06571		2		
Date 07/02/20			Desig	ned by Jo	ao Gil		- MICLO
File Geocellu		2HB.srcx	-	ed by (se		onlv)	Drainag
Innovyze	arar cann	2		e Control		0	
					201701		
		H	lydro-Brak	e® Optimu	<u>im</u>		
Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)
7.000	6.9				7.9		
7.500	7.2	8.500	7.6	9.500	8.1		
		H	lydro-Brak	e® Optimu	ım		
			Unit Refere		-0094-3200-		
			esign Head ign Flow (l			0.300	
		Des	Flush-F		с	alculated	
			Object	ive Minim	ise upstrea	m storage	
			Applicat			Surface	
		:	Sump Availa Diameter (Yes 94	
		In	vert Level			0.300	
	Minimum C		Diameter (. ,		150	
	Suggest	ted Manhole	Diameter (mm)		1200	
Control H	Points	Head (m)	Flow (l/s)		rol Points		(m) Flow (l/s
Control B Design Point (0.300	3.2		Kick-	Head -Flo® 0.	(m) Flow (1/s 239 2. - 2.
Design Point (Calculated) Flush-Flo [®]	0.300 0.136	3.2 3.2	Cont: Mean Flow	Kick- over Head H	Head -Flo® 0. Range	.239 2. - 2.
Design Point (The hydrologi	Calculated) Flush-Flo ^m ical calcul	0.300 • 0.136 ations have	3.2 3.2 been based	Cont Mean Flow	Kick- over Head F ad/Discharg	Head Flo® 0. Range re relation	.239 2. - 2. ship for the
Design Point (The hydrologi Hydro-Brake®	Calculated) Flush-Flom ical calcul Optimum as	0.300 0.136 ations have specified.	3.2 3.2 been based Should ar	Mean Flow d on the He	Kick- over Head F ad/Discharg of control	Head Flo® 0. Range re relation device ot	.239 2. - 2. ship for the
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C	Calculated) Flush-Flo ^m ical calcul Optimum as Dptimum® be	0.300 0.136 ations have specified. utilised t	3.2 3.2 been based Should ar then these s	Contr Mean Flow d on the He nother type storage rou	Kick- over Head F ad/Discharg of control ting calcul	Head Flo® 0. Range re relation device ot ations wil	239 2. - 2. ship for the her than a
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C	Calculated) Flush-Flo ^m ical calcul Optimum as Dptimum® be	0.300 0.136 ations have specified. utilised t	3.2 3.2 been based Should ar then these s	Contr Mean Flow d on the He nother type storage rou Depth (m)	Kick- over Head F ad/Discharg of control ting calcul	Head Flo® 0. Range re relation device ot ations wil	239 2. - 2. ship for the her than a 1 be invalidat
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 5	Calculated) Flush-Flo ^m ical calcula Optimum as Dptimum® be Flow (1/s)	0.300 0.136 ations have specified. utilised t Depth (m)	3.2 3.2 been based Should ar then these s Flow (1/s)	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s)	Head Flo® 0. Range re relation device ot ations wil Depth (m) 7.000	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s)
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) = 0.100 0.200 0.300	Calculated) Flush-Flo [®] ical calcula Optimum as Dptimum® be Flow (1/s) 3.0 3.1 3.2	0.300 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600	3.2 3.2 e been based Should ar then these s Flow (1/s) 6.1 6.5 7.0	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8	Head Flo® 0. Range The relation device ot ations wil Depth (m) 7.000 7.500 8.000	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) = 0.100 0.200 0.300 0.400	Calculated) Flush-Flo ^m ical calcul Optimum as Dptimum® be Flow (1/s) 3.0 3.1 3.2 3.7	<pre>0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800</pre>	3.2 3.2 e been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4	Head -Flo® 0. Range The relation device ott ations will Depth (m) 7.000 7.500 8.000 8.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 5 0.100 0.200 0.300 0.400 0.500	Calculated) Flush-Flo ^m ical calcul Optimum as Dptimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0	<pre>0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000</pre>	3.2 3.2 e been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7	Contr Mean Flow d on the He mother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0	Head -Flo® 0. Range re relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	Head -Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	<pre>0 0.300 * 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400</pre>	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Cont: Mean Flow d on the He nother type storage rou Depth (m) 3.000 3.500 4.000 4.500 5.000 5.500 6.000	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2
Design Point (The hydrologi Hydro-Brake® Hydro-Brake C Depth (m) 2 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Calculated) Flush-Flom Optimum as Optimum® be Flow (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	0.300 ■ 0.136 ations have specified. utilised t Depth (m) 1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	3.2 3.2 been based Should ar then these s Flow (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4	Contr Mean Flow d on the He nother type storage rou Depth (m) 3.000 4.000 4.500 5.000 5.500 6.000 6.500	Kick- over Head F ad/Discharg of control ting calcul Flow (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2 13.7	Head Flo® 0. Range de relation device ot ations wil Depth (m) 7.000 7.500 8.000 8.500 9.000 9.500	239 2. - 2. ship for the her than a 1 be invalidat Flow (1/s) 14.3 14.8 15.3 15.7 16.2

Surface water outputs

1 in 100 years storm plus 40% climate change

Hydrologic Services		Page 1
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	<u> </u>
Theale RG7 4AB	К0657Ъ	Micro
Date 07/02/2019	Designed by Joao Gil	
File Geocellular tank 2HB.srcx	Checked by (self check only)	Drainage
Innovyze	Source Control 2017.1	

Summary of Results for 100 year Return Period (+40%)

	Stor		Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(1/s)	(1/s)	(1/s)	(m³)	
15	min	Summer	0.195	0.195	0.0	1.3	1.3	88.9	ок
		Summer			0.0	1.5	1.5		ок
		Summer			0.0	2.1	2.1	151.1	
		Summer			0.0	4.1	4.1		
		Summer			0.0	4.7	4.7		
		Summer			0.0	4.7	4.8		
		Summer			0.0	4.0	4.0		0 K
		Summer			0.0	4.7	4.7	181.3	
		Summer			0.0	4.6	4.6		
+		Summer			0.0	4.5	4.5		
		Summer			0.0	4.3	4.3		
		Summer			0.0	3.9	3.9		
2160	min :	Summer	0.359	0.359	0.0	3.2	3.2	163.7	ОК
2880	min S	Summer	0.348	0.348	0.0	2.7	2.7	158.7	ОК
4320	min S	Summer	0.332	0.332	0.0	2.1	2.1	151.4	ОК
5760	min S	Summer	0.319	0.319	0.0	1.8	1.8	145.7	ОК
7200	min S	Summer	0.308	0.308	0.0	1.6	1.6	140.6	ОК
8640	min 3	Summer	0.297	0.297	0.0	1.5	1.5	135.7	ОК

Half Drain Time : 546 minutes.

	Stor Ever		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	150.640	0.0	79.8	19
30	min	Summer	101.360	0.0	103.3	34
60	min	Summer	65.100	0.0	149.9	64
120	min	Summer	38.920	0.0	179.5	122
180	min	Summer	28.387	0.0	196.5	180
240	min	Summer	22.540	0.0	208.1	240
360	min	Summer	16.123	0.0	223.1	292
480	min	Summer	12.662	0.0	233.2	354
600	min	Summer	10.486	0.0	240.7	422
720	min	Summer	8.983	0.0	246.7	490
960	min	Summer	7.038	0.0	255.1	628
1440	min	Summer	4.999	0.0	258.0	910
2160	min	Summer	3.579	0.0	304.1	1336
2880	min	Summer	2.847	0.0	321.9	1756
4320	min	Summer	2.101	0.0	352.5	2596
5760	min	Summer	1.721	0.0	392.7	3464
7200	min	Summer	1.493	0.0	425.8	4320
8640	min	Summer	1.342	0.0	458.6	5104
		©19	82-2017	XP Sol	utions	

Unit 6, Comm	ervices								Page 2
	erce Park			Sheep	cote l	Farm			
Brunel Way				Surfa	ace Wat	ter Mana	gement	Plan	4
Theale RG7 4	AB			K0657					
Date 07/02/2						y Joao G	; 1		— Micro
		0.00		-		-		1	Drainage
File Geocell	ular tank	ZHB.S	rcx		_	(self cl		ту)	Brainiage
Innovyze				Sourc	ce Cont	trol 201	/.1		
	Summary of	of Res	ults :	for 10	0 year	Return	Period	(+40%)	<u>)</u>
	Storm	Max	Max	Ma	x	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ation (Control E	Outflow	Volume	
		(m)	(m)	(1/	s)	(1/s)	(l/s)	(m³)	
1008	0 min Summer	0.289	0.289		0.0	1.5	1.5	131.6	ОК
1	5 min Winter	0.219	0.219		0.0	1.4	1.4	99.6	ОК
3	0 min Winter	0.293	0.293		0.0	1.5		133.4	
6	0 min Winter	0.369	0.369		0.0	3.7		168.3	
	0 min Winter				0.0	5.0		191.9	
	0 min Winter				0.0	5.0		201.7	÷
	0 min Winter				0.0	5.1		205.5	÷
	0 min Winter				0.0	5.1		204.9	
	0 min Winter				0.0	5.1		203.0	
	0 min Winter				0.0	5.0		200.5	
	0 min Winter				0.0	5.0		197.5	
	0 min Winter				0.0	5.0		191.1	
	0 min Winter				0.0	4.7		180.7	
	0 min Winter				0.0	3.9		170.9	
	0 min Winter				0.0	3.3		164.4	
	0 min Winter				0.0	2.5		155.5	
	0 min Winter				0.0	2.0	2.0	148.5	
					0 0	1 (1 0		
	0 min Winter 0 min Winter				0.0	1.6		141.5	
	0 min Winter 0 min Winter				0.0	1.6 1.5		141.5 132.7	
				Rain	0.0		1.5	132.7	
		0.291	0.291	Rain mm/hr)	0.0 Flooded	1.5 L Discharg	1.5	132.7 eak	
		0.291 Storm	0.291		0.0 Flooded	1.5 L Discharg	1.5 e Time-P	132.7 eak	
	0 min Winter	0.291 Storm	0.291		0.0 Flooded Volume	1.5 Discharg Volume (m ³)	1.5 e Time-P (mins	132.7 eak	
	0 min Winter 10080	0.291 Storm Event	0.291 (mmer	mm/hr)	0.0 Flooded Volume (m ³)	1.5 Discharg Volume (m ³) 490.	<pre>1.5 e Time-P (mins) 6 5</pre>	132.7 eak	
	0 min Winter 10080 15	0.291 Storm Event min Su	0.291 (mmer nter 1	mm/hr) 1.234 50.640	0.0 Flooded Volume (m ³) 0.0	1.5 Discharg Volume (m ³) 490. 88.	1.5 e Time-P (mins 6 5 7	132.7 eak s) 944	
	0 min Winter 10080 15 30	0.291 Storm Event min Su min Wi	0.291 (mmer nter 1 nter 1	mm/hr) 1.234 50.640 01.360	0.0 Flooded Volume (m ³) 0.0 0.0	1.5 Discharg Volume (m ³) 490. 88. 111.	1.5 e Time-P (mins 6 5 7 1	132.7 eak 5) 944 19	
	0 min Winter 10080 15 30 60	0.291 Storm Event min Su min Wi min Wi	0.291 (mmer nter 1 nter 1 nter 1	mm/hr) 1.234 50.640 01.360 65.100	0.0 Flooded Volume (m ³) 0.0 0.0 0.0	1.5 Discharg Volume (m ³) 490. 88. 111. 168.	1.5 e Time-P (mins 6 5 7 1 1	132.7 eak 5) 944 19 33	
	0 min Winter 10080 15 30 60 120 180	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi	0.291 (mmer nter 1 nter 1 nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220.	1.5 e Time-P (mins 6 5 7 1 1 5 5	132.7 eak 3) 944 19 33 62 120 176	
	0 min Winter 10080 15 30 60 120 180 240	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi	0.291 (mmmer nter 1 nter 1 nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233.	1.5 e Time-P (mins 6 5 7 1 1 5 5 4	132.7 eak 944 19 33 62 120 176 232	
	0 min Winter 10080 15 30 60 120 180 240 360	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi	0.291 (mmmer nter 1 nter 1 nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2	132.7 eak 944 19 33 62 120 176 232 332	
	0 min Winter 10080 15 30 60 120 180 240 360 480	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.291 (mmmer nter 1 nter 1 nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5	132.7 eak 944 19 33 62 120 176 232 332 374	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.291 (mmmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 0	132.7 eak 19 19 33 62 120 176 232 332 374 450	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.291 (mmmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 0 8	132.7 eak 19 33 62 120 176 232 332 374 450 524	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960	0.291 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286.	1.5 e Time-P (mins) 6 5 7 1 1 5 5 4 2 5 0 8 5	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440	0.291 Storm Event min Su min Wi min Wi	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286. 290.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 4 2 5 3	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668 952	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160	0.291 Storm Event min Su min Wi min Wi	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999 3.579	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286. 290. 340.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 0 8 5 3 9 1	132.7 eak 19 19 33 62 120 176 232 332 374 450 524 668 952 380	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	0.291 Storm Event min Su min Wi min Wi	0.291 (i mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999 3.579 2.847	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286. 290. 340. 360.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 1 1 5 4 2 5 1 1 5 5 4 2 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 1 1 5 5 5 1 1 5 5 5 1 1 5 5 1 1 5 5 5 1 1 5 5 5 1 1 1 5 5 5 5 1 1 1 5 5 5 5 5 1 1 1 5 5 5 5 5 5 5 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668 952 380 816	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	0.291 Storm Event min Su min Wi min Wi M	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999 3.579 2.847 2.101	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286. 290. 340. 360. 394.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 1 1 5 5 4 2 5 3 9 1 8 1 3 2 2 3 3 2 3 2 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668 952 380 816 720	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	0.291 Storm Event min Su min Wi min Wi M	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999 3.579 2.847 2.101 1.721	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 286. 290. 340. 360. 394. 439.	1.5 e Time-P (mins) 6 5 7 1 5 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 4 2 5 3 9 1 8 1 3 2 9 3 2	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668 952 380 816 720 632	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 7200 960 1440 2160 2880 4320 5760 7200	0.291 Storm Event min Su min Wi min Wi M	0.291 (mmer nter 1 nter 1 nter nter nter nter nter nter nter nter	mm/hr) 1.234 50.640 01.360 65.100 38.920 28.387 22.540 16.123 12.662 10.486 8.983 7.038 4.999 3.579 2.847 2.101	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1.5 Discharg Volume (m ³) 490. 88. 111. 168. 201. 220. 233. 250. 261. 270. 276. 276. 286. 290. 340. 360. 394. 439.	1.5 e Time-P (mins 6 5 7 1 5 5 4 2 5 5 4 2 5 5 3 9 1 8 1 3 2 9 1 8 1 3 2 9 3 0 4 1 3 2 9 3 0 4 1 3 2 9 3 0 4 1 3 2 9 3 0 4 1 3 2 9 3 0 4 1 3 2 3 0 4 1 3 2 3 3 0 4 1 3 2 3 3 0 4 1 3 2 3 3 1 3 2 3 3 1 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	132.7 eak 944 19 33 62 120 176 232 332 374 450 524 668 952 380 816 720	

Hydrologic Services				Page 3
Unit 6, Commerce Park		Sheepcote F	arm	
Brunel Way		Surface Wat	er Management P	lan 🖌
Theale RG7 4AB		К0657b		Micco
Date 07/02/2019		Designed by	Joao Gil	
File Geocellular tank	2HB.srcx	Checked by	(self check only	_{y)} Drainage
Innovyze		Source Cont		
-				
Summary	of Results i	for 100 year	Return Period ((+40%)
Storm Event	Max Max Level Depth (m) (m)		Max Max Control Σ Outflow V (1/s) (1/s)	Max Status Colume (m ³)
10080 min Winter			1.5 1.5	
		Rain Flooded nm/hr) Volume (m³)	Discharge Time-Pea Volume (mins) (m ³)	
10080) min Winter	(m ⁻)		56
10000	/ MIN WINCEI	1.234 0.0	550.1 020	
	©1982	-2017 XP Sol	utions	

Hydrologic Services		Page 4
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	Y .
Theale RG7 4AB	K0657b	- Cm
Date 07/02/2019	Designed by Joao Gil	Micro
		Drainage
File Geocellular tank 2HB.srcx	Checked by (self check only)	S. S
Innovyze	Source Control 2017.1	
Ra	ainfall Details	
Rainfall Mod	el FEH	
Return Period (year		
FEH Rainfall Versi		
Site Locati	on GB 326000 246550 SO 26000 46550	
Data Ty	-	
Summer Stor		
Winter Stor Cv (Summe		
CV (Summe CV (Winte		
Shortest Storm (min		
Longest Storm (min	is) 10080	
Climate Change	e % +40	
Ti	me Area Diagram	
Tot	al Area (ha) 0.318	
г	'ime (mins) Area	
F	rom: To: (ha)	
	0 4 0.318	
©1982	-2017 XP Solutions	

Hydrologic Services Page 5 Unit 6, Commerce Park Sheepcote Farm Brunel Way Surface Water Management Plan Theale RG7 4AB K0657b Date 07/02/2019 Designed by Joao Gil File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 Onesign Head (m) Acea (m²) Inf. Area (m²) Onesign Head (m) 0.200 Design Head
Brunel Way Theale RG7 4AB Theale RG7 4AB Theale RG7 4AB Date 07/02/2019 File Geocellular tank 2HB.srcx Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.661 0.0 0.0 Complex Outflow Control Hydro-Brake@ Optimum Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Water Management Plan Note: Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Theale RG7 4AB K0657b Date 07/02/2019 Designed by Joao Gil File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.661 0.0 0.0 Occupied Wight Control Mydro-Brake@ Optimum Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) Init Reference MD-SHE-0064-1300-0200-1300 Design Flow (1/s) Init Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) Init Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) Flush-Flo [®] Calculated Objective Minimise upstream storage
Date 07/02/2019 File Geocellular tank 2HB.srcx Innovyze Source Control 2017.1 Model Details Storage is Online Cover Level (m) 1.800 <u>Cellular Storage Structure</u> Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.661 0.0 0.0 Complex Outflow Control Hydro-Brake® Optimum Unit Reference MD-SHE-0064-1300-0220-1300 Design Head (m) 0.200 Design Head (m) 0.200 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Fipe Diameter (mm) 100
File Geocellular tank 2HB.srcx Checked by (self check only) Innovyze Source Control 2017.1 Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.0000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.660 480.0 0.0 0.661 0.0 0.0 Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Innovyze Source Control 2017.1 Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Popth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.660 480.0 0.0 Complex Outflow Control Hydro-Brake@ Optimum Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo** Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000
Model Details Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.661 0.0 0.0 O.661 0.0 0.0 Onglex Outflow Control Lydro-Brake@ Optimum Unit Reference MD-SHE-0064-1300-0200-1300 Design Flow (1/s) 1.3 Flush-Flo™ Calculated Objective Minimise upstream storage Application Sump Available Yes Diameter (mm) Onlow
Storage is Online Cover Level (m) 1.800 Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.0000 Porsity 0.95 Infiltration Coefficient Base (m/hr) 0.0000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.660 480.0 0.0 Oneplex Outflow Control Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flor* Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000
Cellular Storage Structure Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m²) Inf. Area (m²) 0.000 480.0 0.0 0.661 0.0 0.0 0.661 0.0 0.0 O.661 0.0 0.0 D.600 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo* Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 <t< td=""></t<>
Invert Level (m) 0.000 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m ²) Inf. Area (m ²) 0.000 480.0 0.0 0.661 0.0 0.0 0.660 480.0 0.0 0.661 0.0 0.0 Complex Outflow Control Hydro-Brake@ Optimum Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Infiltration Coefficient Base (m/hr) 0.00000 Infiltration Coefficient Side (m/hr) 0.00000 Depth (m) Area (m ²) Inf. Area (m ²) 0.000 480.0 0.0 0.660 480.0 0.0 Complex Outflow Control <u>Hydro-Brake@ Optimum</u> Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
0.000 480.0 0.0 0.661 0.0 0.0 0.660 480.0 0.0 0.661 0.0 0.0 <u>Complex Outflow Control</u> <u>Hydro-Brake® Optimum</u> Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
0.660 480.0 0.0 Complex Outflow Control <u>Hydro-Brake® Optimum</u> Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^m Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Hydro-Brake® OptimumUnit Reference MD-SHE-0064-1300-0200-1300 Design Head (m)0.200Design Head (m)0.201Design Flow (1/s)1.3Flush-Flo™Calculated Objective Minimise upstream storage ApplicationSump AvailableYes Diameter (mm)64 Invert Level (m)0.000Minimum Outlet Pipe Diameter (mm)100
Hydro-Brake® OptimumUnit Reference MD-SHE-0064-1300-0200-1300 Design Head (m)0.200Design Head (m)0.201Design Flow (1/s)1.3Flush-Flo™Calculated Objective Minimise upstream storage ApplicationSump AvailableYes Diameter (mm)64 Invert Level (m)0.000Minimum Outlet Pipe Diameter (mm)100
Unit Reference MD-SHE-0064-1300-0200-1300 Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^{me} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Design Head (m) 0.200 Design Flow (1/s) 1.3 Flush-Flo ^{me} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Design Flow (1/s) 1.3 Flush-Flo ^{me} Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Flush-FlomeCalculatedObjectiveMinimise upstream storageApplicationSurfaceSump AvailableYesDiameter (mm)64Invert Level (m)0.000Minimum Outlet Pipe Diameter (mm)100
ApplicationSurfaceSump AvailableYesDiameter (mm)64Invert Level (m)0.000Minimum Outlet Pipe Diameter (mm)100
Sump AvailableYesDiameter (mm)64Invert Level (m)0.000Minimum Outlet Pipe Diameter (mm)100
Diameter (mm) 64 Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Invert Level (m) 0.000 Minimum Outlet Pipe Diameter (mm) 100
Minimum Outlet Pipe Diameter (mm) 100
Suggested Manhole Diameter (mm) 1200
Control Points Head (m) Flow (1/s) Control Points Head (m) Flow (1/
Design Point (Calculated) 0.200 1.3 Kick-Flo® 0.160 1
Flush-Flo™ 0.089 1.3 Mean Flow over Head Range - 1
The hydrological calculations have been based on the Head/Discharge relationship for the
Hydro-Brake® Optimum as specified. Should another type of control device other than a
Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidation
Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s) Depth (m) Flow (1/s)
0.100 1.3 0.800 2.4 2.000 3.7 4.000 5.2
0.200 1.3 1.000 2.7 2.200 3.9 4.500 5.5
0.300 1.6 1.200 2.9 2.400 4.0 5.000 5.9
0.400 1.8 1.400 3.1 2.600 4.2 5.500 6.1 0.500 2.0 1.600 3.3 3.000 4.5 6.000 6.4
0.500 2.1 1.800 3.5 3.500 4.5 6.000 6.4 0.600 2.1 1.800 3.5 3.500 4.9 6.500 6.7
1 1 1
©1982-2017 XP Solutions

Hydrologic S	Servic	ces									Pa	ge 6	
Unit 6, Comr	merce	Park		5	Sheep	cote Fa	rm						
Brunel Way				5	Surfa	ce Wate	r Mana	agemen	t Plan			1.	
Theale RG7 4	4AB			F	K0657b						\sim	Jun	
Date 07/02/2				I	Desig	ned by	Joao (il				NICLO	
File Geocellular tank 2HB.srcx (Checked by (self check only))										aqe			
Innovyze		cum				e Contr			011117				
1					Jouro	0 001102	01 201						
				Hydro	-Brak	ce® Opti	mum						
Depth (m)	Flow	(1/s)	Depth (m) Flow	(l/s)	Depth (r	n) Flow	/ (1/s)	Depth	(m)	Flow	(1/s))
7.000		6.9	8.00	+	7.4			7.9					
7.500	1	7.2	8.50	0	7.6	9.50	00	8.1					
				Hydro	-Brak	ce® Opti	m11m						
				iiyaro	DIG	100 0001	man						
				Unit Design		ence MD-S	HE-0094	4-3200-	0300-32				
			D	esign F						.2			
			_	-	lush-H			С	alculat	ed			
						tive Min	imise u	upstrea		2			
					plicat				Surfa				
				Sump .	Availa eter				-	es 94			
				Invert		. ,			0.3				
	Min	imum C	Outlet Pi			. ,				50			
			ed Manho	-					1.0	~ ~			
		aggeot		re bram	eter	(mm)			12	00			
Control			Head (m				ntrol 1	Points			(m)	Flow ((1/s)
Control Design Point	Points	8	Head (m) Flow	(1/s) 3.2	Co		Kick-	He-Flo®	ead	(m) 1 239 –	Flow (2.9
	Points (Calcu Flus	lated) h-Flo ^m	Head (m 0.30 * 0.13) Flow 0 6	(1/s) 3.2 3.2	Co Mean Flo	ow over	Kick- Head H	He Flo® Range	ead 0.	239		2.9 2.5
Design Point The hydrolog Hydro-Brake	Points (Calcu Flus gical c D Optim	alated) h-Flo ^m calcula	Head (m 0.30 0.13 ations ha specifie) Flow 0 6 we been d. Sho	(1/s) 3.2 3.2 base	Mean Flo d on the nother ty	w over Head/D	Kick- Head H ischarg control	He Flo® Range ge relat . device	ead 0.	239 - ship	for tl han a	2.9 2.5 he
Design Point The hydrolog	Points (Calcu Flus gical c D Optim	alated) h-Flo ^m calcula	Head (m 0.30 0.13 ations ha specifie) Flow 0 6 we been d. Sho	(1/s) 3.2 3.2 base	Mean Flo d on the nother ty	w over Head/D	Kick- Head H ischarg control	He Flo® Range ge relat . device	ead 0.	239 - ship	for tl han a	2.9 2.5 he
Design Point The hydrolog Hydro-Brake	Points (Calcu Flus gical c D Optim Optimu	ated) h-Flo" calcula num as nm® be	Head (m 0.30 * 0.13 ations ha specifie utilised) Flow 0 6 we been d. Sho l then t	(1/s) 3.2 3.2 base buld at	Mean Flo d on the nother ty storage r	Head/D pe of couting	Kick- Head H ischarg control calcul	He Flo® Range ge relat device ations	ead 0. :ions : oth will	239 - ship her t l be	for th han a inval:	2.9 2.5 he idate
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100	Points (Calcu Flus gical c D Optim Optimu Flow	s lated) h-Flo ^m calcula num as um® be (l/s) 3.0	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20) Flow 0 6 d. Sho 1 then t 0 Flow 0	(1/s) 3.2 3.2 base uld a these (1/s) 6.1	Mean Flo d on the nother ty storage r Jepth (r 3.00	Head/D pe of couting n) Flow	Kick- Head H ischarg control calcul r (1/s) 9.4	He Flo® Range ge relat device ations Depth 7.	ead 0. ions oth will (m) 000	239 - ship her t l be	for th han a inval: (1/s) 14.3	2.9 2.5 he idate
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200	Points (Calcu Flus gical c D Optim Optimu Flow	s lated) h-Flo ^m calcula num as um® be (l/s) 3.0 3.1	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40) Flow 0 6 d. Sho 1 then t 1 Flow 0 0	(1/s) 3.2 3.2 base buld a these (1/s) 6.1 6.5	Mean Flo d on the nother ty storage r Depth (r 3.00 3.50	Head/D pe of couting a) Flow	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1	He Flo® Range ge relat device ations Depth 7. 7.	ead 0. :ions : oth will (m) 000 500	239 - ship her t l be	for th han a inval: (1/s) 14.3	2.9 2.5 he idate) 3 8
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60) Flow 0 6 ad. Sho 1 then t 0 Flow 0 0	(1/s) 3.2 3.2 base buld a these (1/s) 6.1 6.5 7.0	Mean Flo d on the nother ty storage r Depth (r 3.00 3.56 4.00	Head/D ppe of couting a) Flow 00	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8	He Flo® Range device ations Depth 7. 7. 8.	ead 0. :ions : oth will (m) 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3	2.9 2.5 he idate) 3 8 3
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im(0 be (1/s) 3.0 3.1 3.2 3.7</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80) Flow 0 6 we been d. Sho 1 then t 0 7 0 0 0 0 0 0	(1/s) 3.2 3.2 base buld a these (1/s) 6.1 6.5 7.0 7.4	Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50	Head/D The of formating (1) Flow (1) 00 (1)	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4	Flo® Range re relat device ations Depth 7. 7. 8.	ead 0. ions oth will (m) 000 500 000 500	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.4 15.3	2.9 2.5 he idate) 3 8 3 7
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>lated) h-Flo^m calcula num as im(0 be (1/s) 3.0 3.1 3.2 3.7 4.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00) Flow 0 6 2. ve been 2. Sho 1 then t 0 Flow 0 0 0 0 0 0 0	(1/s) 3.2 3.2 a base buld a chese (1/s) 6.1 6.5 7.0 7.4 7.7	Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00	Head/D ppe of couting a) Flow 00 00 00 00 00	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im@ be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20) Flow 0 6 ave been ad. Sho ad. Sho ad. Sho been been constant constant	(1/s) 3.2 3.2 base buld a chese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1	Co Mean Flo d on the nother ty storage r 3.00 3.56 4.00 4.50 5.50	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. ions oth will (m) 000 500 000 500	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.4 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im@ be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	(1/s) 3.2 3.2 base buld a chese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40) Flow 0 6 ave been add. Sho add. Sho been then t been o <lio< li=""> o o o o<</lio<>	<pre>(1/s) 3.2 3.2 base buld a bese (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	Head/D pe of couting () () () () () () () () () () () () ()	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Points (Calcu Flus gical c D Optim Optimu Flow	<pre>s lated) h-Flo^m calcula num as im® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0</pre>	Head (m 0.30 0.13 ations ha specifie utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.40 2.60	<pre>) Flow 0 6 .ve been cd. Sho l then t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	(1/s) 3.2 3.2 base- buld achese (1/s) 6.1 6.5 7.00 7.4 7.7 8.1 8.4 8.8	Co Mean Flo d on the nother ty storage r Depth (r 3.00 3.50 4.00 4.50 5.00 5.50 6.00	bw over Head/D ppe of fouting a) Flow 00 00 00 00 00 00 00 00 00 00 00	Kick- Head F ischarg control calcul r (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range ge relat device ations Depth 7. 7. 8. 8. 9. 9.	ead 0. iions e oth will (m) 000 500 000 500 000	239 - ship her t l be	for th han a inval: (1/s) 14.3 14.3 15.3 15.3	2.9 2.5 he idate) 3 8 3 7 2

Surface water outputs

1 in 100 years storm plus 40% climate change

Hydrologic Services		Page 1
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	
Theale RG7 4AB	K0657b	Micro
Date 07/02/2019	Designed by Joao Gil	Drainage
File GEOCELLULAR TANK 2HB.SRCX	Checked by (self check only)	Diamaye
Innovyze	Source Control 2017.1	

Summary of Results for 500 year Return Period (+40%)

	Stor	m	Max	Max	Max	Max	Max	Max	Status
	Even	t	Level	Depth	Infiltration	Control	Σ Outflow	Volume	
			(m)	(m)	(l/s)	(1/s)	(1/s)	(m³)	
1 5		Summer	0 200	0 200	0.0	1.5	1.5	131.5	ок
		Summer		* * = * *	0.0	4.4	4.4	177.4	÷
		Summer			0.0	5.1	5.1		ОК
		Summer			0.0	5.1	5.1		O K
		Summer			0.0	5.2	5.2		O K
240	min	Summer	0.579	0.579	0.0	5.2	5.2	264.1	ОК
360	min	Summer	0.568	0.568	0.0	5.1	5.1	258.9	ОК
480	min	Summer	0.552	0.552	0.0	5.1	5.1	251.9	ОК
600	min	Summer	0.538	0.538	0.0	5.1	5.1	245.3	ОК
720	min	Summer	0.524	0.524	0.0	5.1	5.1	238.9	ОК
960	min	Summer	0.498	0.498	0.0	5.1	5.1	227.3	ОК
1440	min	Summer	0.456	0.456	0.0	5.1	5.1	207.8	ОК
2160	min	Summer	0.413	0.413	0.0	5.0	5.0	188.2	ОК
2880	min	Summer	0.390	0.390	0.0	4.5	4.5	178.1	ОК
4320	min	Summer	0.367	0.367	0.0	3.6	3.6	167.5	ОК
5760	min	Summer	0.355	0.355	0.0	3.0	3.0	161.7	ОК
		Summer			0.0	2.7	2.7		ОК
		Summer		* * * * * *	0.0	2.5	2.5	155.4	ок

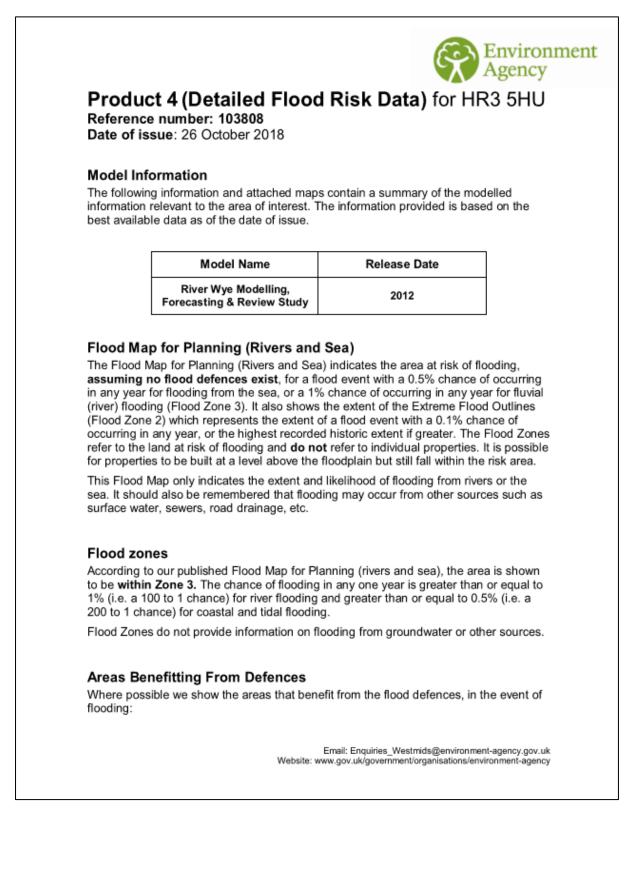
Half Drain Time : 697 minutes.

	Sto: Eve		Rain (mm/hr)	Flooded Volume (m³)	Discharge Volume (m³)	Time-Peak (mins)
15	min	Summer	222.392	0.0	110.1	19
30	min	Summer	151.865	0.0	134.5	33
60	min	Summer	98.394	0.0	227.9	64
120	min	Summer	57.231	0.0	265.3	122
180	min	Summer	40.973	0.0	284.7	182
240	min	Summer	32.082	0.0	297.0	240
360	min	Summer	22.488	0.0	311.6	344
480	min	Summer	17.374	0.0	320.2	396
600	min	Summer	14.194	0.0	326.0	454
720	min	Summer	12.020	0.0	330.2	512
960	min	Summer	9.236	0.0	335.3	644
1440	min	Summer	6.375	0.0	331.4	908
2160	min	Summer	4.447	0.0	378.6	1296
2880	min	Summer	3.478	0.0	393.9	1672
4320	min	Summer	2.516	0.0	422.4	2464
5760	min	Summer	2.039	0.0	465.5	3280
7200	min	Summer	1.759	0.0	501.7	4040
8640	min	Summer	1.575	0.0	538.7	4848
		©19	82-2017	XP Sol	lutions	

	ervices								Page 2
Jnit 6, Comm	erce Park			Shee	pcote l	Farm			
Brunel Way				Surf	ace Wat	cer Mana	gement	Plan	<u> </u>
Theale RG7 4	AR			K065					
							2.1		— Micro
Date 07/02/2						y Joao G			Drainag
File GEOCELL	ULAR TANK	2HB.SI	RCX		-	(self c		ly)	brainag
Innovyze				Sour	ce Cont	trol 201	7.1		
	Summary o	of Res	ults	for 50	0 year	Return	Period	(+40%)
	Storm	Max	Max	Ma	x	Max	Max	Max	Status
	Event	Level	Depth	Infilt	ration (Control E	Outflow	Volume	
		(m)	(m)	(1/	s)	(1/s)	(1/s)	(m³)	
1008	0 min Summer	0.337	0.337		0.0	2.3	2.3	153.7	о к
1	5 min Winter	0.323	0.323		0.0	1.9	1.9	147.3	O K
3	0 min Winter	0.435	0.435		0.0	5.0	5.0	198.4	O K
6	0 min Winter	0.554	0.554		0.0	5.1		252.8	
	0 min Winter				0.0	5.5		284.6	+
	0 min Winter				0.0	5.6		295.7	
	0 min Winter				0.0	5.7		298.8	
	0 min Winter				0.0	5.6		294.6	
	0 min Winter				0.0	5.5		285.3	
	0 min Winter				0.0	5.4		277.3	
	0 min Winter				0.0	5.3		269.9	-
	0 min Winter				0.0	5.1		255.1	-
	0 min Winter				0.0	5.1		226.4	
	0 min Winter				0.0	5.0		196.6	
	0 min Winter				0.0	4.7		181.3	
	0 min Winter				0.0	3.7		168.5	
576	0 min Winter	0.355	0.355		0.0	3.0	3.0	161.7	O K
700	0	0 245	0 245		0 0			1 6 7 1	0 1/
	0 min Winter 0 min Winter				0.0	2.6	2.6	157.1	
	0 min Winter 0 min Winter				0.0		2.6	157.1 153.7	
	0 min Winter			Rain	0.0	2.6	2.6 2.3	153.7	
	0 min Winter	0.337	0.337		0.0	2.6 2.3 Discharg	2.6 2.3	153.7 eak	
	0 min Winter	0.337 Storm	0.337		0.0 Flooded	2.6 2.3 Discharg	2.6 2.3 e Time-P	153.7 eak	
	0 min Winter	0.337 Storm	0.337		0.0 Flooded Volume	2.6 2.3 Discharg Volume (m ³)	2.6 2.3 e Time-P (mins	153.7 eak	
	0 min Winter 10080	0.337 Storm Event	0.337 (1.447	0.0 Flooded Volume (m ³)	2.6 2.3 Discharg Volume (m ³) 575.	2.6 2.3 e Time-P (mins 9 5	153.7 eak	
	0 min Winter 10080 15 30	0.337 Storm Event min Su min Wi min Wi	0.337 (mmer nter 2 nter 1	1.447 22.392 51.865	0.0 Flooded Volume (m ³) 0.0 0.0 0.0	2.6 2.3 Discharg Volume (m ³) 575. 116. 150.	2.6 2.3 e Time-P (mins 9 5 4 8	153.7 eak 5) 648 19 33	
	0 min Winter 10080 15 30 60	0.337 Storm Event min Su min Wi min Wi min Wi	0.337 (mmer nter 2 nter 1 nter	1.447 22.392 51.865 98.394	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255.	2.6 2.3 e Time-P (mins 9 5 4 8 5	153.7 eak 5) 648 19 33 62	
	0 min Winter 10080 15 30 60 120	0.337 Storm Event min Su min Wi min Wi min Wi min Wi	0.337 (ntmer nter 2 nter 1 nter nter	1.447 22.392 51.865 98.394 57.231	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2	153.7 eak 5) 648 19 33 62 120	
	0 min Winter 10080 15 30 60 120 180	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi	0.337 (nter 2 nter 1 nter nter nter nter	1.447 222.392 51.865 98.394 57.231 40.973	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9	153.7 eak 5) 648 19 33 62 120 178	
	0 min Winter 10080 15 30 60 120 180 240	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi	0.337 (nter 2 nter 1 nter nter nter nter nter	1.447 222.392 51.865 98.394 57.231 40.973 32.082	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6	153.7 eak 19 33 62 120 178 234	
	0 min Winter 10080 15 30 60 120 180 240 360	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi	0.337 (nter 2 nter 1 nter nter nter nter nter nter	1.447 222.392 51.865 98.394 57.231 40.973 32.082 22.488	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8	153.7 eak 19 33 62 120 178 234 344	
	0 min Winter 10080 15 30 60 120 180 240 360 480	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.337 (nter 2 nter 1 nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2	153.7 eak 19 33 62 120 178 234 344 442	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3	153.7 eak 19 33 62 120 178 234 344 442 472	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 368.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3 5	153.7 eak 19 33 62 120 178 234 344 442 472 548	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960	0.337 Storm Event min Su min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi min Wi	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 368. 372.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3 5 7	153.7 eak 19 33 62 120 178 234 344 442 472 548 702	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440	0.337 Storm Event min Su min Wi min Wi	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 368. 372. 370.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3 5 7 3	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160	0.337 Storm Event min Su min Wi min Wi	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375 4.447	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 368. 372. 370. 424.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3 5 7 3 3 1	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982 364	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880	0.337 Storm Event min Su min Wi min Wi	0.337 (mmer 2 nter 1 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375 4.447 3.478	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 368. 372. 370. 424. 441.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 6 8 2 3 5 7 3 3 1 5 1	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982 364 728	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320	0.337 Storm Event min Su min Wi min Wi m	0.337 (mmer 2 nter 1 nter 1 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375 4.447 3.478 2.516	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 364. 364. 364. 372. 370. 424. 441.	2.6 2.3 e Time-P (mins 9 5 4 8 5 5 6 8 2 9 6 8 2 3 5 7 3 1 5 1 6 2 2 3 1 5 5 7 3 1 5 2 9 6 8 2 3 5 7 3 1 1 5 2 2 3 3 1 1 5 4 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982 364 728 548	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760	0.337 Storm Event min Su min Wi min Wi M	0.337 (mmer nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375 4.447 3.478 2.516 2.039	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 364. 364. 364. 364. 370. 424. 441. 472. 521.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 5 6 8 2 3 5 7 3 3 1 5 5 1 1 6 2 3 3 1 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982 364 728 548 352	
	0 min Winter 10080 15 30 60 120 180 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	0.337 Storm Event min Su min Wi min Wi m	0.337 (mmer 2 nter 2 nter 1 nter nter nter nter nter nter nter nter	1.447 22.392 51.865 98.394 57.231 40.973 32.082 22.488 17.374 14.194 12.020 9.236 6.375 4.447 3.478 2.516	0.0 Flooded Volume (m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	2.6 2.3 Discharg Volume (m ³) 575. 116. 150. 255. 297. 318. 332. 348. 358. 364. 364. 364. 364. 364. 370. 424. 441. 472. 521. 562.	2.6 2.3 e Time-P (mins 9 5 4 8 5 2 9 5 7 3 3 1 5 5 7 3 1 5 1 6 2 3 3 1 5 5 7 3 3 1 5 4 8 2 3 5 5 7 3 3 1 5 4 8 2 3 3 5 4 8 2 3 3 5 4 8 2 3 3 5 4 8 2 3 3 5 4 8 2 3 3 5 4 8 2 3 3 5 4 8 5 4 8 5 4 8 5 4 8 5 4 8 5 5 4 8 5 5 5 5	153.7 eak 19 33 62 120 178 234 344 442 472 548 702 982 364 728 548	

Hydrologic Services						Page 3
Unit 6, Commerce Park		Shee	pcote F	'arm		
Brunel Way					ement Plan	Y .
Theale RG7 4AB		K065				- Com
Date 07/02/2019				Joao Gi	1	– Micro
File GEOCELLULAR TANK	2HB SBCY				eck only)	Drainage
Innovyze	2110.01(07	1		rol 2017		J
TIMOVYZE		3001	ce conc	101 2017	• •	
Summary	of Results	for 50)0 vear	Return P	eriod (+40%)	
Storm	Max Max	M	ax	Max	Max Max S	Status
Event					utflow Volume	
	(m) (m)	(1,	(s)	(1/s) (1/s) (m ³)	
10080 min Winter	0.331 0.331		0.0	2.1	2.1 150.9	ОК
				-· ·		
	Storm Event (Rain	Flooded Volume		Time-Peak (mins)	
	Evenc ((m ³)	(m ³)	(mins)	
10080	min Winter	1.447	0.0	645.6	5944	
	@1000	-2017	XP Sol	utions		
	@1.902	. 2017	AF 501	actons		

Hydrologic Services		Page 4
Unit 6, Commerce Park	Sheepcote Farm	
Brunel Way	Surface Water Management Plan	4
Theale RG7 4AB	K0657b	- Com
Date 07/02/2019	Designed by Joao Gil	Micro
File GEOCELLULAR TANK 2HB.SRCX	Checked by (self check only)	Drainage
Innovyze	Source Control 2017.1	
111107920		
<u>R</u>	ainfall Details	
Rainfall Mo	del FEH	
Return Period (yea		
FEH Rainfall Vers		
Site Locat:	ion GB 326000 246550 SO 26000 46550	
Data T	ype Catchment	
Summer Sto:		
Winter Sto		
Cv (Summ		
Cv (Winte		
Shortest Storm (min		
Longest Storm (min		
Climate Change	e % +40	
Ti	ime Area Diagram	
То	tal Area (ha) 0.318	
	Time (mins) Area	
F	rom: To: (ha)	
	0 4 0.318	
©1982	2-2017 XP Solutions	


Hydrologic Services		Page 5						
Unit 6, Commerce Park	Sheepcote Farm							
Brunel Way	Surface Water Management Plan							
Theale RG7 4AB	K0657b	· · · · · · · · · · · · · · · · · · ·						
Date 07/02/2019	Designed by Joao Gil	Micro						
File GEOCELLULAR TANK 2HB.SRCX	Checked by (self check only)	Drainage						
Innovyze	Source Control 2017.1							
1111007720	Source concroit 2017.1							
	Model Details							
Storage is	Online Cover Level (m) 1.800							
Cellu	lar Storage Structure							
	vert Level (m) 0.000 Safety Factor nt Base (m/hr) 0.00000 Porosity nt Side (m/hr) 0.00000							
Depth (m) Area (m²) Inf. 2	Area (m ²) Depth (m) Area (m ²) Inf. An	rea (m²)						
0.000 480.0 0.660 480.0	0.0 0.661 0.0 0.0	0.0						
Comp	plex Outflow Control							
Hy	dro-Brake® Optimum							
	it Reference MD-SHE-0064-1300-0200-1							
	3	200 1.3						
Desig	Flush-Flo™ Calculat							
	Objective Minimise upstream stora							
	Application Surfa							
	ump Available Niameter (mm)	Yes 64						
		000						
Minimum Outlet Pipe D		100						
Suggested Manhole D	Diameter (mm) 12	200						
Control Points Head (m) F.	low (1/s) Control Points H	lead (m) Flow (l/s)						
Design Point (Calculated) 0.200	1.3 Kick-Flo®	0.160 1.2						
Flush-Flo™ 0.089	1.3 Mean Flow over Head Range	- 1.0						
Hydro-Brake® Optimum as specified.	been based on the Head/Discharge rela Should another type of control devic	e other than a						
Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated								
Depth (m) Flow (1/s) Depth (m) F	low (l/s) Depth (m) Flow (l/s) Depth	(m) Flow (l/s)						
0.100 1.3 0.800		.000 5.2						
0.200 1.3 1.000		.500 5.5						
0.300 1.6 1.200		.000 5.9						
0.400 1.8 1.400 0.500 2.0 1.600		.500 6.1 .000 6.4						
0.600 2.1 1.800	3.5 3.500 4.9 6.	.500 6.7						
	3.5 3.500 4.9 6.	.500 6.7						

Hydrologic S	Servio	ces										Pa	ige 6	5
Unit 6, Comm					Sheep	cote F	arm						2	
Brunel Way					-	ce Wat		Manac	remen	t Pla	n		1	
Theale RG7 4	170			I	K0657		01 1	lanag	Jemen	C 110				1 ~
						-	-		1			_ N	Nicro	Ŭ
Date 07/02/2					-	ned by						16	Icair	nage
File GEOCELI	LULAR	TANK	2HB.SR			ed by				only)			Jun	iuge
Innovyze					Sourc	e Cont	rol	2017	1.1					
				Hydro	-Brak	ce® Opt	imu	m						
Depth (m)	Flow	(1/s)	Depth (n) Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s	в)
7.000		6.9	8.00	0	7.4		000		7.9					
7.500		7.2	8.50	0	7.6	9.	500		8.1					
				Hydro	-Brak	ce® Opt	imu	m						
				Unit	Refere	ence MD-	-SHE-	-0094-	-3200-	0300-3	200			
					Head						300			
			D	esign F							3.2			
				-	lush-F				-	alcula				
					-	ive Mi	inimi	ise up	strea		-			
					plicat Availa					Surf	ace Yes			
				-	neter (94			
				Invert		. ,				0.	300			
	Min	nimum C	Dutlet Pi	pe Diam	neter	(mm)					150			
	S	Suggest	ed Manho	le Diam	oter (-	~ ~ ~			
					lecer	(mm)				1	200			
Control			Head (n				Contr	col Po	oints			(m)	Flow	(1/s)
Control Design Point	Points	s	Head (m) Flow	(l/s) 3.2	c			Kick-	-Flo®	Head	(m) 239 -	Flow	2.9
	Point: (Calcu Flus	s lated) sh-Flo ⁿ	Head (m 0.30 * 0.13	0 6	(1/s) 3.2 3.2	Mean F	low	over	Kick- Head F	-Flo® Range	Head 0.	239		2.9 2.5
Design Point The hydrolog Hydro-Brake	Point: (Calcu Flus gical (D Optir	s ulated) sh-Flo ^m calcul; mum as	Head (m 0.30 0.13 ations has specific	a) Flow 0 6 ave been ad. Sho	(1/s) 3.2 3.2 n base	Mean F d on the nother t	low e Hea type	over ad/Dis of co	Kick- Head F scharg	-Flo® Range re rela devic	Head 0. tion	239 - ship her t	for t	2.9 2.5 the
Design Point The hydrolog	Point: (Calcu Flus gical (D Optir	s ulated) sh-Flo ^m calcul; mum as	Head (m 0.30 0.13 ations has specific	a) Flow 0 6 ave been ad. Sho	(1/s) 3.2 3.2 n base	Mean F d on the nother t	low e Hea type	over ad/Dis of co	Kick- Head F scharg	-Flo® Range re rela devic	Head 0. tion	239 - ship her t	for t	2.9 2.5 the
Design Point The hydrolog Hydro-Brake	Point: (Calcu Flus gical (D Optin Optim	s ilated) sh-Flo" calcula mum as um® be	Head (n 0.30 0.13 ations has specific utilised	a) Flow 10 16 16 10 10 10 10 10 10 10 10 10 10 10 10 10	(1/s) 3.2 3.2 n base ould as these	Mean F. d on the nother t storage	low e Hea type rout	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul	Flo® Range de rela devic ations	Head 0. ation ation ation wil	239 - ship her t l be	for t than a inval	2.9 2.5 the a lidate
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100	Point: (Calcu Flus gical o D Optim Optim Flow	shalated) sh-Flo ^m calcula mum as uum® be (1/s) 3.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20	() Flow () () () () () () () () () () () () ()	(1/s) 3.2 3.2 n base ould a these (1/s) 6.1	Mean F d on the nother t storage Depth 3.	low e Hea type rout (m) 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4	Flo® Range de rela devic ations Depth 7	Head 0. ation se ot wil (m) .000	239 - ship her t l be	for f than a inval (1/s 14.	2.9 2.5 the a lidate s) .3
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200	Point: (Calcu Flus gical c D Optim Optim Flow	sh-Flo ^m calcula mum as um® be (1/s) 3.0 3.1	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40	() Flow () () () () () () () () () () () () ()	(1/s) 3.2 3.2 in base ould as these (1/s) 6.1 6.5	Mean F d on the nother t storage Depth 3. 3.	e Heatype rout (m) 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1	Flo® Range devic ations Depth 7 7	Head 0. ation se ot wil (m) .000 .500	239 - ship her t l be	for i than a inva (1/s 14, 14,	2.9 2.5 the a lidate s) .3 .8
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300	Point: (Calcu Flus gical c 0 Optim Optimu Flow	s alated) sh-Flo ^m calcula mum as um® be (1/s) 3.0 3.1 3.2	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60	 a) Flow ave been ad. Shall b) Flow a) a) 	(1/s) 3.2 3.2 in base ould an these (1/s) 6.1 6.5 7.0	Mean F d on the nother t storage Depth 3. 3. 4.	low e Hea type rout (m) 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8	Flo® Range devic ations Depth 7 7 8	Head 0. ation se ot wil (m) .000 .500 .000	239 - ship her t l be	for t than a inva: s (1/s 14, 14, 15,	2.9 2.9 the a lidato s) .3 .8 .3
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400	Point: (Calcu Flus gical d Ø Optim Optim Flow	s sh-Flo ^m calcula mum as um® be (1/s) 3.0 3.1 3.2 3.7	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80	() Flow () () () () () () () () () () () () ()	<pre>(1/s) 3.2 3.2 a.2 buld a these (1/s) 6.1 6.5 7.0 7.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4.	low de Heatype rout (m) 000 500 000 500	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4	Flo® Range devic ations Depth 7 7 8 8	Head 0. tion ce ot wil (m) .000 .500 .500	239 - ship her t l be	for t than a invai a (1/s 14, 14, 15, 15,	2.9 2.5 the a lidate s) .3 .8 .3 .7
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500	Point: (Calcu Flus gical d Ø Optim Optim Flow	s allated) sh-Flo ^m calcula mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00	 a) Flow a) Flow b) constant c) Flow c) Flow c) constant c) const c) const c) co	<pre>(1/s) 3.2 3.2 a.2 buld a these (1/s) 6.1 6.5 7.0 7.4 7.7</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5.	low de Heatype rout (m) 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0	Flo® Range devic ations Depth 7 7 8 8 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400	Point: (Calcu Flus gical d 0 Optim Optim Flow	s sh-Flo ^m calcula mum as um® be (1/s) 3.0 3.1 3.2 3.7	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80	 a) Flow a) Flow b) constraints c) Flow c) 6 c) 7 <lic) 7<="" li=""> c) 7 <lic) 7<="" li=""> </lic)></lic)>	<pre>(1/s) 3.2 3.2 a.2 buld a these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5.	low de Heatype rout (m) 000 500 000 500	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .500	239 - ship her t l be	for t than a invai a (1/s 14, 14, 15, 15,	2.9 2.9 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 a.2 buld a these (1/s) 6.1 6.5 7.0 7.4 7.7</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (m 0.30 0.13 ations ha specific utilised Depth (m 1.20 1.40 1.60 1.80 2.00 2.20 2.40	 a) Flow a) Flow b) Flow c) Flow c) 0 <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""> <lic) 0<="" li=""></lic)></lic)></lic)></lic)>	<pre>(1/s) 3.2 3.2 3.2 buld as these (1/s) 6.1 6.5 7.0 7.4 7.7 8.1 8.4</pre>	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	low e Hea type rout (m) 000 500 000 500 000 500 000 500 000	over a ad/Dis of co ting o	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2
Design Point The hydrolog Hydro-Brake Hydro-Brake Depth (m) 0.100 0.200 0.300 0.400 0.500 0.600 0.800	Point: (Calcu Flus gical d Optim Optim Flow	s allated) sh-Flo ^m calcul: mum as um® be (1/s) 3.0 3.1 3.2 3.7 4.0 4.4 5.0	Head (n 0.30 0.13 ations ha specific utilised Depth (n 1.20 1.40 1.60 2.00 2.40 2.60	 a) Flow a) Flow b) constant c) constant <lic) constant<="" li=""> <lic) constant<="" li=""></lic)></lic)>	(1/s) 3.2 3.2 an base buld an these (1/s) 6.1 6.5 7.0 0.7.4 7.7 8.1 8.4 8.8	Mean F d on the nother t storage Depth 3. 3. 4. 4. 5. 5. 6.	e Heatype rout (m) 000 500 000 500 000 500 000 500	over ad/Dis of co ting o Flow	Kick- Head F scharg ontrol calcul (1/s) 9.4 10.1 10.8 11.4 12.0 12.6 13.2	Flo® Range de rela devic ations Depth 7 7 8 8 9 9	Head 0. tion ce ot wil (m) .000 .500 .000 .500 .000	239 - ship her t l be	for t than a inva: (1/s 14, 14, 15, 15, 16,	2.9 2.5 the a lidate s) .3 .8 .3 .7 .2

Hydro-Logic Page 57

Appendix D – Environment Agency Product 4

- from rivers with a 1% (1 in 100) chance in any given year, or;
- from the sea with a 0.5% (1 in 200) chance in any given year.

If the defences were not there, these areas would flood. Please note that we do not show all areas that benefit from flood defences.

The associated Dataset is available here: <u>https://data.gov.uk/dataset/flood-map-for-planning-rivers-and-sea-areas-benefiting-from-defences</u>

Node Data/ Modelled Levels

The attached flood map will show a selection of 1D model node points near to your site. The fluvial levels and flows for these node points are shown below.

Fluvial Flood Levels (m AOD)

The modelled levels are given in m AOD (N), m AOD indicates metres Above Ordnance Datum (Newlyn). The information is taken from the model referenced above and does not include the updated climate change figures.

				Annual	Exceeda	nce Prol	bability -	Maximum	Water Lev	els (m AOD)	defended	I
Node Label	Easting	Northing	50% (1 in 2)	20% (1 in 5)	10% (1 in 10)	5% (1 in 20)	2% (1 in 50)	1.33% (1 in 75)	1% (1 in 100)	1% (1 in 100) inc. 20% Climate Change	0.5% (1 in 200)	0.1% (1 in 1000)
46	324743	247415	69.25	69.52	69.70	69.83	70.03	70.11	70.18	70.43	70.36	70.87
47	324931	247500	69.07	69.36	69.56	69.70	69.90	70.00	70.06	70.33	70.25	70.77
48	325245	247570	69.00	69.27	69.45	69.60	69.79	69.88	69.95	70.21	70.13	70.66
50	325723	247511	68.84	69.11	69.29	69.44	69.63	69.72	69.79	70.05	69.97	70.49
52	325884	247437	68.50	68.69	68.81	68.91	69.03	69.09	69.13	69.26	69.22	69.44
53	326097	247371	68.40	68.61	68.73	68.83	68.96	69.02	69.06	69.21	69.17	69.42
54	326392	247454	68.31	68.50	68.61	68.70	68.81	68.86	68.90	69.03	68.99	69.23
55	326613	247468	68.17	68.37	68.49	68.58	68.70	68.76	68.80	68.95	68.91	69.18
63	326736	246368	67.25	67.52	67.69	67.81	68.01	68.09	68.15	68.38	68.31	68.81

Fluvial Flood Flows (m³/s)

The fluvial flood flows for the model nodes are measured in cubic metres per second, or cumecs (m3/s).

				4	Annual Ex	ceedance	e Probabi	lity - Maxim	um Flows	s (m³/s) defen	ded	
Node Label	Easting	Northing	50% (1 in 2)	20% (1 in 5)	10% (1 in 10)	5% (1 in 20)	2% (1 in 50)	1.33% (1 in 75)	1% (1 in 100)	1% (1 in 100) inc. 20% Climate Change	0.5% (1 in 200)	0.1% (1 in 1000)
46	324743	247415	426.926	521.043	593.858	662.005	770.207	826.804	871.108	1045.340	991.220	1383.090
47	324931	247500	432.983	528.494	602.478	671.631	781.408	838.795	883.477	1060.450	1005.550	1402.940
48	325245	247570	408.956	484.143	542.669	598.126	687.760	734.981	771.627	916.416	871.537	1196.190
50	325723	247511	390.801	438.790	475.238	509.939	568.000	599.205	623.302	716.909	687.964	896.516
52	325884	247437	390.804	440.409	478.699	512.093	559.756	583.439	601.700	676.188	652.831	819.777
53	326097	247371	390.793	440.401	478.692	512.086	559.717	583.258	601.262	672.755	650.750	804.624
54	326392	247454	390.778	440.395	478.681	512.073	559.515	582.642	599.985	664.518	645.316	774.693
55	326613	247468	389.575	432.913	463.896	490.059	525.589	542.595	555.463	602.196	588.172	681.240
63	326736	246368	422.769	457.409	470.251	478.971	483.221	484.386	484.875	485.711	485.641	487.428

Hydro-Logic Services Page 61

Modelled Flood Extents

Please find attached a map showing the results of the model (referenced above) for your area. This shows modelled flood extents, not taking into account flood defences unless marked 'defended'. Climate change will increase flood risk due to overtopping of defences.

Climate Change

In February 2016 the 'Flood Risk Assessments: Climate Change Allowances' were published on GOV.UK. This is in replacement of previous climate change allowances for planning applications. The data provided in this product does not include the new allowances. You will need to consider this data and factor in the new allowances to demonstrate the development will be safe from flooding. The fluvial climate change factors are now more complex and a single uplift percentage across England cannot be justified.

The Environment Agency will incorporate the new allowances into future modelling studies. For now, it remains the applicant's responsibility to demonstrate through their proposal and flood risk assessments that new developments will be safe in flood risk terms for its lifetime.

Recorded Flood Outlines

Following an examination of our records of historical flooding we do hold records of flooding for this area, please find tabulated information below for these recorded flood events.

Flood Event Code	Flood Event Date	Source of Flooding	Cause of Flooding
3229	1947	Fluvial	Channel exceeded capacity, no raised flood defences present.

The corresponding recorded flood outline/s can be accessed here: https://data.gov.uk/dataset/recorded-flood-outlines1

The Recorded Flood Outlines take into account the presence of defences, structures, and other infrastructure where they existed at the time of flooding. It includes flood extents that may have been affected by overtopping, breaches or blockages. Any flood extents shown do not necessarily indicate that properties were flooded internally. It is also possible that the pattern of flooding in this area has changed and that this area would now flood or not flood under different circumstances.

Please note that our records are not comprehensive and that the map is an indicative outline of areas which have previously flooded, not all properties within this area will have flooded. It is possible that other flooding may have occurred that we do not have records for.

You may also wish to contact your Local Authority or Internal Drainage Board (where relevant), to see if they have other relevant local flood information.

Flood Defences

There are no formal flood defences owned or operated by the Environment Agency protecting this site. You may wish to contact the Local Authority to obtain further information regarding localised flooding from drains, culverts and small watercourses, and regarding existing or planned flood defence measures.

Planning development/s

If you have requested this information to help inform a development proposal, then you should note the information on GOV.UK on the use of Environment Agency Information for Flood Risk Assessments. You can also request pre application advice:

https://www.gov.uk/planning-applications-assessing-flood-risk https://www.gov.uk/government/publications/pre-planning-application-enquiry-formpreliminary-opinion

Supporting Information

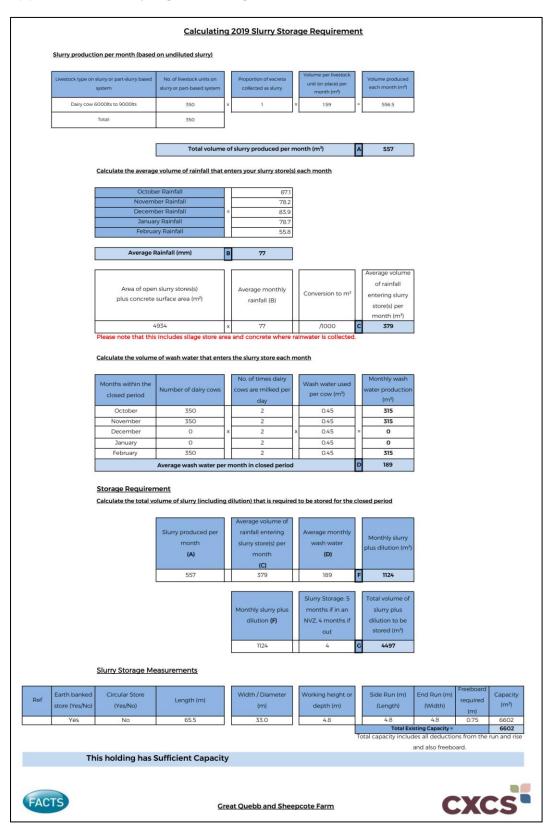
Surface Water

Managing the risk of flooding from surface water is the responsibility of Lead Local Flood Authorities. The 'risk of flooding from surface water' map has been produced by the Environment Agency on behalf of government, using information and input from Lead Local Flood Authorities.

You may wish to contact your Local Authority who may be able to provide further detailed information on surface water.


It is not possible to say for certain what the flood risk is but we use the best information available to provide an indication so that people can make informed choices about living with or managing the risks. The information we supply does not provide an indicator of flood risk at an individual site level. Further information can be found on the Agency's website:

https://flood-warning-information.service.gov.uk/long-term-flood-risk


Flood Risk from Reservoirs

The Flood Risk from Reservoirs map can be found on the Long Term Flood Risk Information website:

Appendix E – Slurry lagoon storage calculations

Offices at

Bromyard Exeter Reading Sheffield Stirling

Registered office

Hydro-Logic Services (International) Ltd Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD

Registered in England 03036787