

File Note

Project title Hereford Bus Interchange

Document title Drainage Strategy Addendum

File reference 964-ARP-HDG-ZZ-RP-C-000002

Status S2 | SUITABLE FOR INFORMATION

Revision	Role	Name	Date
	Author	Katie Amos	01/02/24
	Checker	Katie Amos	01/02/24
P02	Approver	Katie Amos	01/02/24
	Authoriser		
	Client		

Revision History

Revision	Author	Date	Description
P02	KA	01/02/24	ISSUED FOR INFORMATION
P01	SS	19/01/24	ISSUED FOR INFORMATION

1. Drainage Strategy Addendum

Following the submission of the planning application for Hereford Station Transport Hub (HSTH) (Ref: 233009), the Hereford Council Drainage Officer provided comments on the proposed drainage strategy (Ref: 964-ARP-HDG-ZZ-RP-C-000001) submitted with the application. The comments included the following:

- 1. Flow control device for the bus overlay area is upsized to a minimum of 75mm to avoid the risk of blockage.
- 2. Main area of site discharging to the surface water sewer. If this area is proposed for adoption, then two attenuation crates will be required. One to accommodate a 1 in 30-year storm event and the other a 1 in 100-year storm event. Currently only one 220m2 area is proposed, with a discharge rate of 16l/s via a 169mm flow control device.
- 3. A weir manhole will be required.
- 4. Applicant should confirm the level of the receiving public surface water sewer.

Following the receipt of the drainage comments, a meeting was held to discuss the proposals with HC and their drainage officer on 15th November 2023. The comments above were discussed and the HC Drainage officer added that as the ultimate outfall destination is the same watercourse for both the bus overlay area and the main site, the total maximum run-off rate should remain the same. If increasing the size of the flow control device to 75mm which serves the bus layover area increases the discharge flow rate, then the flow from the main site area should be further restricted.

Since the above comments and subsequent meetings, a review of the drainage proposals has been completed to address the above comments. These are summarised below.

The design team held a meeting with Welsh Water (DCWW) on 28th November 2023 to discuss the project proposed drainage strategy including adoption of the network. The DCWW adoptions engineer confirmed that DCWW would not adopt any of the surface water drainage network within the site boundary as it would be from one curtilage. They will only adopt from the demarcation manhole chamber onwards as the pipe leaves the site boundary. This was confirmed in email, see extract included in Appendix AA1. As such, only one attenuation crate is required.

The proposed surface water network models have been updated to incorporate the requested changes to the flow control devices and weir manholes. The calculations are included in Appendix BB1.

The design team have requested a survey to be carried out of the DCWW surface water sewer and combined sewer adjacent to the proposed connection point on City Link Road. This is to confirm the route, size and invert level of the sewer to fully inform the design. This survey is yet to be undertaken and results are awaited.

It should be noted that the surface water connection has always been the preferred solution as this follows the drainage destination hierarchy. However, if the results of the survey show a connection to the surface water sewer is not possible then the proposals would need to revert to a connection to the DCWW combined sewer within the site. DCWW have not dismissed this solution, they have stated they are open to discuss options or possible alternatives but only once the sewer survey information has been received. They are not currently in a position to explore a connection to the combined public sewer, see extract included in Appendix AA1. DCWW are endeavouring to reduce the surface water flows which discharge to their combined sewer networks and therefore they request the connection to the DCWW surface water sewer is fully explored before discussing any alternative.

Appendix AA1: Correspondence from DCWW

RE: RE: Hereford Station - DCWW Pre Planning Response (Ref: PPA0007171)

Hi Katie

Thank you for your email.

Once you have had the survey carried out on the surface water line and have explored the connection to the surface water sewer, if there are concerns with the design at this stage please get In touch to and we can discuss options or possible alternatives. However, we are currently not in a position to explore the possibility of connecting to the combined public sewer.

Kind regards,

Phillip Little

Development Planning Officer| Developer Services Dŵr Cymru Welsh Water

V: dwrcymru.com

. 0000 917 2032

We will respond to your email as soon as possible but you should allow up to 10 working days to receive a response. For most of the services we offer we set out the timescales that we work to on our Developer Services section of our website. Just follow this link https://www.dwrcymru.com/en/Developer-Services.aspx and select the service you require where you will find more information and guidance notes which should assist you. If you cannot find the information you are looking for then please call us on 0800 917 2652 as we can normally deal with any questions you have during the call.

If we've gone the extra mile to provide you with excellent service, let us know. You can nominate an individual or team for a Diolch award through our website.

From: Katie Amos <<u>katie.amos@arup.com</u>>
Sent: Tuesday, January 30, 2024 5:21 PM
To: Phillip Little <<u>Phillip.Little@dwrcymru.com</u>>

Cc: Sion Simpson-Williams <Sion.Simpson-Williams@arup.com>; Luqmaan Kholwadia <Luqmaan.Kholwadia@arup.com>

Subject: RE: Hereford Station - DCWW Pre Planning Response (Ref: PPA0007171)

****** External Mail ******

Good afternoon Phillip,

We are in the process of responding to comments on the Hereford Bus Station planning application, one of which relates to the discharge destination for the

We have requested a survey to be carried out of the DCWW surface water sewer and combined sewer adjacent to the proposed connection point on City Link Road. This is to confirm the routes, sizes and invert levels of the sewers to fully inform the design. We are still awaiting this survey to be undertaken by your Plan and Protect team however, we need to issue our response to the comments.

It should be noted that the surface water connection is the preferred solution as this follows the drainage destination hierarchy. However, if the results of the survey show a connection to the surface water sewer is not possible, then the proposals would need to revert to a connection to the DCWW combined sewer within the site.

The Planning Officer for the application has asked if it can be confirmed that Welsh Water will consider this option should the results of the survey show a connection to the surface water sewer cannot be achieved?

Kind regards

Katie Amos

Senior Engineer | Infrastructure West

Arup

4 Pierhead Street, Capital Waterside, Cardiff CF10 4QP United Kingdom dd: +44 29 2026 6520

www.arup.com

Connect with Arup on LinkedIn

Follow @ArupGroup

RE: RE: Hereford Station - DCWW Pre Planning Response (Ref: PPA0007171) [Filed 28 Nov 2023 23:24]

Hi Katio

Thank you for your time on the call this afternoon with myself and my colleague Mohammad running through the proposed drainage layout with us.

As Mohammad confirmed, we would not adopt any on site drainage as this will be remaining under one curtilage. We will therefore only adopt from the demarcation chamber onwards as the pipe leaves the sites boundary.

If we can be of any further assistance, please do not hesitate to contact us.

Kind regards,

We will respond to your email as soon as possible but you should allow up to 10 working days to receive a response. For most of the services we offer we set out the timescales that we work to on our Developer Services section of our website. Just follow this link https://www.dwrcymru.com/en/Developer-Services.aspx and select the service you require where you will find more information and guidance notes which should assist you. If you cannot find the information you are looking for then please call us on 0800 917 2652 as we can normally deal with any questions you have during the call.

Appendix BB1: Proposed Drainage Calculations

Ove Arup & Partners International Ltd					
The Arup Campus	Hereford Interchange				
Blyth Gate	Surface Water Connection				
Solihull B90 8AE		Micro			
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage			
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade			
XP Solutions	Network 2020.1.3	•			

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm - Bus Parking

Pipe Sizes Storm Pl Manhole Sizes STANDARD

FEH Rainfall Model Return Period (years) 2 FEH Rainfall Version 1999 Site Location GB 351500 240400 SO 51500 40400 C (1km) -0.028 D1 (1km) 0.360 D2 (1km) 0.354 D3 (1km) 0.312 E (1km) 0.301 F (1km) 2.294 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 0.000 Foul Sewage (1/s/ha) Volumetric Runoff Coeff. 0.750 PIMP (%) 100 Add Flow / Climate Change (%) 0 Minimum Backdrop Height (m) 0.200 Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 1.00 Min Slope for Optimisation (1:X) 500

Designed with Level Soffits

Network Design Table for Storm - Bus Parking

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	13.790	0.138	100.0	0.028	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.000	7.918	0.201	39.4	0.112	5.00	0.0	0.600	0	225	Pipe/Conduit	0
S1.002 S1.003	15.127 19.457 9.293 12.355	0.097 0.066	200.0	0.053 0.000 0.000 0.000	0.00 0.00 0.00 0.00	0.0	0.600 0.600 0.600 0.600	0 0 0	300 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	ē

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)	
S1.000	50.00	5.18	52.693	0.028	0.0	0.0	0.0	1.31	52.0	3.7	
S2.000	50.00	5.06	52.756	0.112	0.0	0.0	0.0	2.09	83.1	15.1	
\$1.001 \$1.002 \$1.003 \$1.004	50.00 50.00 50.00 50.00	5.65 5.79	52.480 52.315 52.218 52.152	0.192 0.192 0.192 0.192	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0	1.37 1.11 1.10 0.92	96.8 78.3 43.7 36.6	26.0 26.0 26.0 26.0	

@1982-2020 Innovyze

Ove Arup & Partners International Ltd					
The Arup Campus	Hereford Interchange				
Blyth Gate	Surface Water Connection				
Solihull B90 8AE		Micro			
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage			
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade			
XP Solutions	Network 2020.1.3				

Free Flowing Outfall Details for Storm - Bus Parking

Outfall Outfall C. Level I. Level Min D,L W
Pipe Number Name (m) (m) I. Level (mm) (mm)

S1.004 SOutfall 3 53.100 52.090 0.000 0

Simulation Criteria for Storm - Bus Parking

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model						FEH
Return Period (years)						2
FEH Rainfall Version						2013
Site Location	GB	351500	240400	SO	51500	40400
Data Type					Cato	chment
Summer Storms						Yes
Winter Storms						No
Cv (Summer)						0.750
Cv (Winter)						0.840
Storm Duration (mins)						30

Ove Arup & Partners International Ltd					
The Arup Campus	Hereford Interchange				
Blyth Gate	Surface Water Connection				
Solihull B90 8AE		Micro			
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage			
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade			
XP Solutions	Network 2020.1.3				

Online Controls for Storm - Bus Parking

Hydro-Brake® Optimum Manhole: S33, DS/PN: S1.003, Volume (m³): 8.7

Unit Reference MD-SHE-0076-2300-0700-2300 Design Head (m) 0.700 Design Flow (1/s)Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) Invert Level (m) 52.218 Minimum Outlet Pipe Diameter (mm) 100 Suggested Manhole Diameter (mm) 1200

	Control	Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (1/s)
De	sign Point	(Calculated)	0.700	2.3	Kick-Flo®	0.454	1.9
		Flush-Flo™	0.207	2.3	Mean Flow over Head Range	_	2.0

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m)	Flow $(1/s)$
0.100	2.1	1.200	2.9	3.000	4.5	7.000	6.7
0.200	2.3	1.400	3.2	3.500	4.8	7.500	6.9
0.300	2.2	1.600	3.4	4.000	5.1	8.000	7.1
0.400	2.1	1.800	3.5	4.500	5.4	8.500	7.4
0.500	2.0	2.000	3.7	5.000	5.7	9.000	7.6
0.600	2.1	2.200	3.9	5.500	6.0	9.500	7.8
0.800	2.4	2.400	4.1	6.000	6.2		
1.000	2.7	2.600	4.2	6.500	6.5		

Ove Arup & Partners International I	Page 4	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

Storage Structures for Storm - Bus Parking

Cellular Storage Manhole: S33, DS/PN: S1.003

Depth (r	n) Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.00	00 :	150.0				0.	751		0.0			0.0
0.75	50 1	150.0			0.0							

Ove Arup & Partners International I	Page 5	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Diamage
XP Solutions	Network 2020.1.3	

$\frac{\text{2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Bus Parking}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

OFF

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

													Water	
	US/MH			Return	Climate	First	t (X)	First	(Y)	First	(Z)	Overflow	Level	
PN	Name	S	torm	Period	Change	Surcl	narge	Floo	d	Overf	low	Act.	(m)	
S1.000	S29	15	Winter	2	+0%	100/15	Summer						52.738	
S2.000	S30	15	Winter	2	+0%	100/15	Summer						52.833	
S1.001	S31	15	Winter	2	+0%	30/15	Summer						52.598	
S1.002	S32	15	Winter	2	+0%	30/15	Summer						52.444	
S1.003	S33	240	Winter	2	+0%	30/15	Summer						52.359	
S1.004	S34	240	Winter	2	+0%								52.191	

		Surcharged	Flooded			Half Drain	Pipe			
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level	
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded	
S1.000	S29	-0.180	0.000	0.09			3.9	OK		
S2.000	S30	-0.148	0.000	0.25			15.9	OK		
S1.001	S31	-0.182	0.000	0.32			26.0	OK		
S1.002	S32	-0.171	0.000	0.39			26.3	OK		
S1.003	S33	-0.084	0.000	0.06		127	2.2	OK		
S1.004	S34	-0.186	0.000	0.07			2.2	OK		

@1982-2020 Innovyze

Ove Arup & Partners International I	Page 6	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm - Bus Parking

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

OFF

Inertia Status

OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

										water	
	US/MH		Return	Climate	First	: (X)	First (Y)	First (Z)	Overflow	Level	
PN	Name	Storm	Period	Change	Surch	narge	Flood	Overflow	Act.	(m)	
S1.000	S29	15 Winter	30	+40%	100/15	Summer				52.853	
S2.000	S30	15 Winter	30	+40%	100/15	Summer				52.978	
S1.001	S31	15 Winter	30	+40%	30/15	Summer				52.830	
S1.002	S32	240 Winter	30	+40%	30/15	Summer				52.744	
S1.003	S33	240 Winter	30	+40%	30/15	Summer				52.742	
S1.004	S34	15 Winter	30	+40%						52.192	

		Surcharged	${\tt Flooded}$			Half Drain	Pipe				
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level		
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded		
S1.000	S29	-0.065	0.000	0.29			13.2	OK			
S2.000	S30	-0.003	0.000	0.85			53.5	OK			
S1.001	S31	0.050	0.000	1.13			91.6	SURCHARGED			
S1.002	S32	0.129	0.000	0.26			17.7	SURCHARGED			
S1.003	S33	0.299	0.000	0.06			2.3	SURCHARGED			
S1.004 S34 -0.185 0.000 0.07 2.3 OK											
			(1982-2	2020 Inn	ovyze					

Ove Arup & Partners International I	Page 7	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:33	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Bus Parking}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000

Hot Start (mins) 0 MADD Factor * 10m³/ha Storage 2.000

Hot Start Level (mm) 0 Inlet Coefficient 0.800

Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000

Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

OFF

Inertia Status

OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

													water	
	US/MH			Return	Climate	First	: (X)	First	(Y)	First	(Z)	Overflow	Level	
PN	Name	S	torm	Period	Change	Surch	narge	Floo	d	Overf	low	Act.	(m)	
S1.000	S29	15	Winter	100	+40%	100/15	Summer						53.138	
S2.000	S30	15	Winter	100	+40%	100/15	Summer						53.378	
S1.001	S31	15	Winter	100	+40%	30/15	Summer						53.108	
S1.002	S32	240	Winter	100	+40%	30/15	Summer						52.959	
S1.003	S33	240	Winter	100	+40%	30/15	Summer						52.956	
S1.004	S34	240	Winter	100	+40%								52.192	

		Surcharged	${\tt Flooded}$			Half Drain	Pipe			
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level	
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded	
S1.000	S29	0.220	0.000	0.40			18.2	SURCHARGED		
S2.000	S30	0.397	0.000	1.16			73.5	SURCHARGED		
S1.001	S31	0.328	0.000	1.54			125.2	SURCHARGED		
S1.002	S32	0.344	0.000	0.34			23.3	SURCHARGED		
S1.003	S33	0.513	0.000	0.07			2.4	SURCHARGED		
S1.004 S34 -0.185 0.000 0.07 2.4 OK										
			(1982-2	2020 Inn	ovyze				

Ove Arup & Partners International I	Page 1	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	prairia ye
XP Solutions	Network 2020.1.3	•

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm - Surface Water Main Site

Pipe Sizes Storm Pl Manhole Sizes STANDARD

FEH Rainfall Model

Return Period (years) 2 FEH Rainfall Version Site Location GB 351500 240400 SO 51500 40400 Data Type Catchment Maximum Rainfall (mm/hr) 100 Maximum Time of Concentration (mins) 30 Foul Sewage (1/s/ha) 0.000 Volumetric Runoff Coeff. 0.950 PIMP (%) 100 Add Flow / Climate Change (%) 0 0.500 Minimum Backdrop Height (m) Maximum Backdrop Height (m) 1.500 Min Design Depth for Optimisation (m) 1.200 Min Vel for Auto Design only (m/s) 0.75 Min Slope for Optimisation (1:X)1000

Designed with Level Soffits

Network Design Table for Storm - Surface Water Main Site

 $\ensuremath{\mathsf{w}}$ - Indicates pipe capacity < flow

PN	-		-	I.Area		Base	k	HYD		Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)		Design
S1.000	17.420	0.145	120.1	0.028	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
S1.001	13.926	0.116	120.1	0.046	0.00	0.0	0.600	0	225	Pipe/Conduit	<u> </u>
S1.002	15.918	0.119	134.2	0.022	0.00	0.0	0.600	0	225	Pipe/Conduit	₽
S1.003	20.219	0.148	136.6	0.005	0.00	0.0	0.600	0	300	Pipe/Conduit	•
S2.000	16.523	0.396	41.7	0.067	5.00	0.0	0.600	0	225	Pipe/Conduit	ð
S2.001	13.932	0.396	35.2	0.061	0.00	0.0	0.600	0	225	Pipe/Conduit	•
S1.004	3.801	0.025	150.0	0.016	0.00	0.0	0.600	0	300	Pipe/Conduit	6

Network Results Table

PN	Rain	T.C.	•	Σ I.Area			Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	56.21	5.24	52.488	0.028	0.0	0.0	0.0	1.19	47.4	5.4
S1.001	55.29	5.44	52.343	0.074	0.0	0.0	0.0	1.19	47.4	14.1
S1.002	54.22	5.67	52.227	0.096	0.0	0.0	0.0	1.13	44.8	17.9
S1.003	53.13	5.92	52.033	0.101	0.0	0.0	0.0	1.34	95.0	18.5
S2.000	56.73	5.14	52.753	0.067	0.0	0.0	0.0	2.03	80.8	13.1
S2.001	56.22	5.24	52.357	0.128	0.0	0.0	0.0	2.21	88.0	24.7
S1.004	52.92	5.97	51.886	0.245	0.0	0.0	0.0	1.28	90.6	44.6

@1982-2020 Innovyze

Ove Arup & Partners International I	Page 2	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	<u>'</u>

Network Design Table for Storm - Surface Water Main Site

PN	Length	Fall	Slope	I.Area	T.E.	Ва	ase	k	HYD	DIA	Section Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		Design
S1.005	14.112	0.094	150.1	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ò
S1.006	22.125	0.148	149.5	0.005	0.00		0.0	0.600	0	300	Pipe/Conduit	ē
S1.007	9.398	0.064	148.0	0.028	0.00		0.0	0.600	0	300	Pipe/Conduit	ē
s3.000	29.836	0.298	100.1	0.036	5.00		0.0	0.600	0	225	Pipe/Conduit	8
S3.001	15.902	0.159	100.0	0.040	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
s3.002	16.324	0.148	110.3	0.002	0.00		0.0	0.600	0	225	Pipe/Conduit	ē
s3.003	5.993	0.054	110.0	0.000	0.00		0.0	0.600	0	225	Pipe/Conduit	ě
S4.000	5.624	0.112	50.0	0.003	5.00		0.0	0.600	0	150	Pipe/Conduit	.
S4.001	10.571	0.211	50.0	0.047	0.00		0.0	0.600	0	150	Pipe/Conduit	-
s3.004	27.283	0.400	68.2	0.035	0.00		0.0	0.600	0	225	Pipe/Conduit	•
S1.008	11.329	0.076	149.1	0.017	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
s5.000	4.976	0.058	85.8	0.018	5.00		0.0	0.600	0	150	Pipe/Conduit	ď
s6.000	4.521	0.108	41.9	0.016	5.00		0.0	0.600	0	150	Pipe/Conduit	ð
S1.009	6.307	0.261	24.2	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	6
S7.000	32.290	0.269	120.0	0.037	5.00		0.0	0.600	0	300	Pipe/Conduit	ð
S7.001	8.329	0.069	120.0	0.073	0.00		0.0	0.600	0	300	Pipe/Conduit	Ō

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.005	52.15	6.16	51.811	0.245	0.0	0.0	0.0	1.28	90.5	44.6
S1.006	51.00	6.44	51.717	0.250	0.0	0.0	0.0	1.28	90.7	44.6
S1.007	50.53	6.57	51.569	0.278	0.0	0.0	0.0	1.29	91.2	48.3
s3.000	55.56	5.38	52.640	0.036	0.0	0.0	0.0	1.31	52.0	6.9
S3.001	54.63	5.58	52.342	0.076	0.0	0.0	0.0	1.31	52.0	14.3
S3.002	53.66	5.80	52.183	0.078	0.0	0.0	0.0	1.24	49.5	14.4
s3.003	53.31	5.88	52.035	0.078	0.0	0.0	0.0	1.25	49.5	14.4
S4.000	57.07	5.07	52.919	0.003	0.0	0.0	0.0	1.43	25.2	0.5
S4.001	56.47	5.19	52.807	0.049	0.0	0.0	0.0	1.43	25.2	9.5
S3.004	52.10	6.17	51.980	0.163	0.0	0.0	0.0	1.59	63.1	29.1
S1.008	49.97	6.71	51.505	0.458	0.0	0.0	0.0	1.29	90.9	78.6
S5.000	57.02	5.08	52.584	0.018	0.0	0.0	0.0	1.09	19.2	3.5
s6.000	57.16	5.05	52.513	0.016	0.0	0.0	0.0	1.56	27.6	3.2
S1.009	49.85	6.75	51.429	0.493	0.0	0.0	0.0	3.21	227.0	84.3
s7.000	55.59	5.38	52.345	0.037	0.0	0.0	0.0	1.43	101.4	7.0
S7.001	55.14	5.47	52.076	0.110	0.0	0.0	0.0	1.43	101.4	20.8

©1982-2020 Innovyze

Ove Arup & Partners International I	Page 3	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Diamage
XP Solutions	Network 2020.1.3	

Network Design Table for Storm - Surface Water Main Site

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)		Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
s7.002	29.004	0.789	36.8	0.039	0.00	0.0	0.600	0	300	Pipe/Conduit	٥
S1.010	20.761	0.104	200.0	0.027	0.00	0.0	0.600	0	375	Pipe/Conduit	•
S8.000	9.306	0.186	50.0	0.062	5.00	0.0	0.600	0	150	Pipe/Conduit	.
	19.160 28.013	0.140	199.6 200.1	0.021 0.000 0.000 0.000	0.00 0.00 0.00 0.00	0.0	0.600 0.600 0.600 0.600	0 0	225 225	Pipe/Conduit Pipe/Conduit Pipe/Conduit Pipe/Conduit	a a

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
s7.002	54.29	5.66	51.957	0.149	0.0	0.0	0.0	2.60	183.9	27.7
S1.010	48.87	7.02	51.093	0.668	0.0	0.0	0.0	1.28	141.1	112.1
S8.000	56.86	5.11	51.900	0.062	0.0	0.0	0.0	1.43	25.2	12.2
S1.011	48.47	7.13	50.989	0.752	0.0	0.0	0.0	0.92	36.8«	125.0
S1.012	47.29	7.48	50.957	0.752	0.0	0.0	0.0	0.92	36.7«	125.0
S1.013	45.69	7.98	50.861	0.752	0.0	0.0	0.0	0.92	36.6«	125.0
S1.014	45.49	8.05	50.724	0.752	0.0	0.0	0.0	0.93	36.9«	125.0

Free Flowing Outfall Details for Storm - Surface Water Main Site

Outfall	Outfall	C. Level I	. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		

S1.014 SOutfall A 53.570 50.706 0.000 0 0

Simulation Criteria for Storm - Surface Water Main Site

Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000
Areal Reduction Factor 1.000 MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins) 0 Inlet Coefficient 0.800
Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60
Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
Return Period (years) 2
FEH Rainfall Version 2013

©1982-2020 Innovyze

Ove Arup & Partners International I	Page 4	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

Synthetic Rainfall Details

Site Location	GB	351500	240400	SO	51500	40400
Data Type					Cato	chment
Summer Storms						Yes
Winter Storms						No
Cv (Summer)						0.750
Cv (Winter)						0.840
Storm Duration (mins)						30

Ove Arup & Partners International I	Page 5	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

Online Controls for Storm - Surface Water Main Site

Hydro-Brake® Optimum Manhole: S26, DS/PN: S1.011, Volume (m³): 12.1

Unit Reference MD-SHE-0165-1560-1850-1560 Design Head (m) 1.850 Design Flow (1/s) Flush-Flo™ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 165 Invert Level (m) 50.989 Minimum Outlet Pipe Diameter (mm) 225 Suggested Manhole Diameter (mm) 1500

Control Points	Head (m)	Flow (1/s)	Control Points	Head (m)	Flow (l/s)
Design Point (Calculated)	1.850	15.6	Kick-Flo®	1.139	12.4
Flush-Flo™	0.535	15.6	Mean Flow over Head Range	_	13.6

The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated

Depth (m)	Flow (1/s)	Depth (m)	Flow (1/s)	Depth (m) F	low (1/s)	Depth (m)	Flow (1/s)
0.100	5.9	1.200	12.7	3.000	19.6	7.000	29.5
0.200	13.4	1.400	13.7	3.500	21.1	7.500	30.5
0.300	14.7	1.600	14.5	4.000	22.5	8.000	31.4
0.400	15.4	1.800	15.4	4.500	23.8	8.500	32.4
0.500	15.6	2.000	16.2	5.000	25.1	9.000	33.3
0.600	15.6	2.200	16.9	5.500	26.2	9.500	34.1
0.800	15.1	2.400	17.6	6.000	27.3		
1.000	14.0	2.600	18.3	6.500	28.4		

Ove Arup & Partners International I	Page 6	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

Storage Structures for Storm - Surface Water Main Site

Cellular Storage Manhole: S24, DS/PN: S1.010

Invert Level (m) 51.093 Safety Factor 10.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth ((m) Area	(m²)	Inf.	Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.0	000	200.0			0.0	1.	.876		0.0			0.0
1.8	375	200.0			0.0							

Ove Arup & Partners International Ltd						
The Arup Campus	Hereford Interchange					
Blyth Gate	Surface Water Connection					
Solihull B90 8AE		Micro				
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage				
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	niairiade				
XP Solutions	Network 2020.1.3	•				

$\frac{\text{2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Surface Water Main Site}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

OFF

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

Watan

											Water
	US/MH		Return	Climate	First	(X)	First	(Y)	First	(Z) Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge	Floo	od	Overfl	ow Act.	(m)
S1.000	S1	15 Winter	2	+0%	30/15	Summer	100/15 W	Jinter			52.534
S1.001	S2	15 Winter	2	+0%	30/15	Summer					52.417
S1.002	s3	15 Winter	2	+0%	30/15	Summer					52.313
S1.003	S4	15 Winter	2	+0%	30/15	Summer					52.112
S2.000	S5	15 Winter	2	+0%	30/15	Summer					52.808
S2.001	S6	15 Winter	2	+0%	30/15	Summer					52.429
S1.004	s7	15 Winter	2	+0%	30/15	Summer					52.048
S1.005	S7A	15 Winter	2	+0%	30/15	Summer					51.946
S1.006	S8	15 Winter	2	+0%	30/15	Summer					51.849
S1.007	S9	15 Winter	2	+0%	30/15	Summer					51.738
s3.000	S10	15 Winter	2	+0%	30/15	Winter					52.689
S3.001	S11	15 Winter	2	+0%	30/15	Summer					52.413
S3.002	S12	15 Winter	2	+0%	30/15	Summer					52.257
s3.003	S13	15 Winter	2	+0%	30/15	Summer					52.121
S4.000	S14	15 Winter	2	+0%	100/15	Summer					52.932
S4.001	S15	15 Winter	2	+0%	30/15	Summer					52.859
S3.004	S16	15 Winter	2	+0%	30/15	Summer					52.072
S1.008	S17	15 Winter	2	+0%	30/15	Summer					51.712
S5.000	S18	15 Winter	2	+0%	100/120	Winter					52.626
S6.000	S19	15 Winter	2	+0%	100/60	Winter					52.547
S1.009	S20	15 Winter	2	+0%	30/15	Summer					51.574
				©1	982-202	0 Inno	vyze				

Ove Arup & Partners International I	Page 8	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Diamage
XP Solutions	Network 2020.1.3	

$\frac{\text{2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Surface Water Main Site}}$

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Flow	Status	Level Exceeded
S1.000	S1	-0.179	0.000	0.09		3.9	OK	1
S1.001	S2	-0.151	0.000	0.23		9.5	OK	
S1.002	S3	-0.139	0.000	0.31		12.2	OK	
S1.003	S4	-0.221	0.000	0.16		12.8	OK	
S2.000	S5	-0.170	0.000	0.13		9.6	OK	
S2.001	S6	-0.153	0.000	0.22		16.8	OK	
S1.004	s7	-0.138	0.000	0.57		31.5	OK	
S1.005	S7A	-0.165	0.000	0.42		31.4	OK	
S1.006	S8	-0.168	0.000	0.40		32.0	OK	
S1.007	S9	-0.131	0.000	0.55		34.9	OK	
S3.000	S10	-0.176	0.000	0.10		5.1	OK	
S3.001	S11	-0.154	0.000	0.22		9.9	OK	
S3.002	S12	-0.151	0.000	0.23		10.3	OK	
s3.003	S13	-0.139	0.000	0.31		10.3	OK	
S4.000	S14	-0.137	0.000	0.02		0.4	OK	
S4.001	S15	-0.097	0.000	0.26		6.0	OK	
S3.004	S16	-0.133	0.000	0.35		20.3	OK	
S1.008	S17	-0.093	0.000	0.82		56.4	OK	
S5.000	S18	-0.108	0.000	0.17		2.6	OK	
S6.000	S19	-0.116	0.000	0.11		2.3	OK	
S1.009	S20	-0.155	0.000	0.47		60.3	OK	

Ove Arup & Partners International I	Page 9	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

$\frac{\text{2 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Surface Water Main Site}}$

													Water
	US/MH			Return	${\tt Climate}$	First	(X)	First	(Y)	First	(Z)	Overflow	Level
PN	Name	S	torm	Period	Change	Surch	narge	Flood	i	Overf	low	Act.	(m)
S7.000	S21	15	Winter	2	+0%	100/60	Winter						52.391
S7.001	S22	15	Winter	2	+0%	100/15	Summer						52.170
S7.002	S23	15	Winter	2	+0%	30/120	Winter						52.024
S1.010	S24	120	Winter	2	+0%	30/15	Summer						51.358
S8.000	S25	15	Winter	2	+0%	30/15	Summer						51.966
S1.011	S26	120	Winter	2	+0%	2/15	Summer						51.352
S1.012	S27	120	Winter	2	+0%								51.061
S1.013	S28	120	Winter	2	+0%								50.963
S1.014	S29	120	Winter	2	+0%								50.844

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s7.000	S21	-0.254	0.000	0.06			5.2	OK	
S7.001	S22	-0.206	0.000	0.21			14.0	OK	
S7.002	S23	-0.233	0.000	0.11			18.7	OK	
S1.010	S24	-0.110	0.000	0.11		55	13.7	OK	
S8.000	S25	-0.084	0.000	0.40			8.9	OK	
S1.011	S26	0.138	0.000	0.51			14.5	SURCHARGED	
S1.012	S27	-0.121	0.000	0.44			14.5	OK	
S1.013	S28	-0.123	0.000	0.43			14.5	OK	
S1.014	S29	-0.105	0.000	0.56			14.5	OK	

Ove Arup & Partners International Ltd						
The Arup Campus	Hereford Interchange					
Blyth Gate	Surface Water Connection					
Solihull B90 8AE		Micro				
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage				
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade				
XP Solutions	Network 2020.1.3	•				

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Storm - Surface Water Main Site

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

DVD Status

OFF

Inertia Status

OFF

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

													Water	
	US/MH			Return	Climate	First	(X)	First	(Y)	First	(Z)	Overflow	Level	
PN	Name	S	Storm	Period	Change	Surch	narge	Flo	ood	Overf	low	Act.	(m)	
S1.00	00 S1	15	Winter	30	+40%	30/15	Summer	100/15	Winter				53.072	
S1.00			Winter		+40%		Summer	,					53.052	
S1.00			Winter	30	+40%		Summer						53.009	
S1.00)3 S4	15	Winter	30	+40%	30/15	Summer						52.935	
S2.00	00 S5	15	Winter	30	+40%	30/15	Summer						53.090	
S2.00)1 S6	15	Winter	30	+40%	30/15	Summer						53.037	
S1.00)4 S7	15	Winter	30	+40%	30/15	Summer						52.902	
S1.00)5 S7A	15	Winter	30	+40%	30/15	Summer						52.794	
S1.00)6 S8	15	Winter	30	+40%	30/15	Summer						52.682	
S1.00)7 S9	15	Winter	30	+40%	30/15	Summer						52.519	
S3.00	00 S10	15	Winter	30	+40%	30/15	Winter						52.933	
S3.00)1 S11	15	Winter	30	+40%	30/15	Summer						52.898	
S3.00)2 S12	15	Winter	30	+40%	30/15	Summer						52.842	
S3.00)3 S13	15	Winter	30	+40%	30/15	Summer						52.782	
S4.00	00 S14	15	Winter	30	+40%	100/15	Summer						53.001	
S4.00)1 S15	15	Winter	30	+40%	30/15	Summer						52.999	
S3.00	04 S16	15	Winter	30	+40%	30/15	Summer						52.752	
S1.00	08 S17	15	Winter	30	+40%	30/15	Summer						52.383	
					©19	82-202	0 Inno	ovvze						_

Ove Arup & Partners International I	Page 11	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Surface Water Main Site}}$

	US/MH	-	Volume	Flow /	Overflow		Flow	-	Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	0.359	0.000	0.27			11.3	SURCHARGED	1
S1.001	S2	0.484	0.000	0.66			27.2	SURCHARGED	
S1.002	s3	0.557	0.000	0.83			32.9	SURCHARGED	
S1.003	S4	0.602	0.000	0.41			33.6	SURCHARGED	
S2.000	S5	0.112	0.000	0.42			30.4	SURCHARGED	
S2.001	S6	0.455	0.000	0.68			51.9	SURCHARGED	
S1.004	s7	0.716	0.000	1.54			85.0	SURCHARGED	
S1.005	S7A	0.683	0.000	1.12			84.3	SURCHARGED	
S1.006	S8	0.665	0.000	1.06			84.4	SURCHARGED	
S1.007	S9	0.650	0.000	1.46			92.3	SURCHARGED	
S3.000	S10	0.068	0.000	0.36			17.5	SURCHARGED	
S3.001	S11	0.331	0.000	0.71			32.5	SURCHARGED	
S3.002	S12	0.434	0.000	0.63			27.8	SURCHARGED	
s3.003	S13	0.522	0.000	0.91			30.0	SURCHARGED	
S4.000	S14	-0.068	0.000	0.09			1.8	OK	
S4.001	S15	0.043	0.000	1.08			24.4	SURCHARGED	
S3.004	S16	0.547	0.000	1.00			58.5	SURCHARGED	
S1.008	S17	0.578	0.000	2.25			155.5	SURCHARGED	

Ove Arup & Partners International I	Page 12	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	•

$\frac{\text{30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\text{Storm - Surface Water Main Site}}$

												Water
	US/MH			Return	${\tt Climate}$	First	(X)	First (Y)	First	(Z)	Overflow	Level
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overf	low	Act.	(m)
S5.000	S18	15	Winter	30	+40%	100/120	Winter					52.668
S6.000	S19	15	Winter	30	+40%	100/60	Winter					52.578
S1.009	S20	120	Winter	30	+40%	30/15	Summer					52.313
S7.000	S21	15	Winter	30	+40%	100/60	Winter					52.435
S7.001	S22	120	Winter	30	+40%	100/15	Summer					52.312
S7.002	S23	120	Winter	30	+40%	30/120	Winter					52.311
S1.010	S24	120	Winter	30	+40%	30/15	Summer					52.308
S8.000	S25	120	Winter	30	+40%	30/15	Summer					52.308
S1.011	S26	120	Winter	30	+40%	2/15	Summer					52.314
S1.012	S27	240	Summer	30	+40%							51.065
S1.013	S28	240	Summer	30	+40%							50.968
S1.014	S29	360	Summer	30	+40%							50.850

PN	US/MH Name	Surcharged Depth (m)		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S5.000	S18	-0.066	0.000	0.59			8.9	OK	
S6.000	S19	-0.085	0.000	0.39			8.1	OK	
S1.009	S20	0.584	0.000	0.55			70.3	SURCHARGED	
S7.000	S21	-0.210	0.000	0.19			17.8	OK	
S7.001	S22	-0.064	0.000	0.27			17.5	OK	
S7.002	S23	0.054	0.000	0.14			23.7	SURCHARGED	
S1.010	S24	0.840	0.000	0.15			18.2	SURCHARGED	
S8.000	S25	0.258	0.000	0.44			9.9	SURCHARGED	
S1.011	S26	1.100	0.000	0.55			15.6	SURCHARGED	
S1.012	S27	-0.117	0.000	0.47			15.6	OK	
S1.013	S28	-0.118	0.000	0.46			15.6	OK	
S1.014	S29	-0.099	0.000	0.60			15.6	OK	

Ove Arup & Partners International I	Page 13	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Diamage
XP Solutions	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}{\text{Storm - Surface Water Main Site}}$

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000 Foul Sewage per hectare (1/s) 0.000

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model FEH
FEH Rainfall Version 2013
Site Location GB 351500 240400 SO 51500 40400
Data Type Catchment
Cv (Summer) 0.750
Cv (Winter) 0.840

Margin for Flood Risk Warning (mm) 300.0

Analysis Timestep 2.5 Second Increment (Extended)

DTS Status

ON

DVD Status

OFF

Inertia Status

Profile(s) Summer and Winter
Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440
Return Period(s) (years) 2, 30, 100
Climate Change (%) 0, 40, 40

WARNING: Half Drain Time has not been calculated as the structure is too full.

													Water	
		US/MH		Return	Climate	First	(X)	First	(Y)	First	(Z)	Overflow	Level	
	PN	Name	Storm	Period	Change	Surch	narge	Flo	ood	Overf	low	Act.	(m)	
S1	.000	S1	15 Winter	100	+40%	30/15	Summer	100/15	Winter				53.913	
	.001		15 Winter		+40%		Summer	,					53.909	
	.002		15 Winter		+40%		Summer						53.864	
S1	.003	S4	15 Winter	100	+40%	30/15	Summer						53.757	
S2	.000	S5	15 Winter	100	+40%	30/15	Summer						54.038	
S2	.001	S6	15 Winter	100	+40%	30/15	Summer						53.951	
S1	.004	s7	15 Winter	100	+40%	30/15	Summer						53.717	
S1	.005	S7A	15 Winter	100	+40%	30/15	Summer						53.547	
S1	.006	S8	15 Winter	100	+40%	30/15	Summer						53.375	
S1	.007	S9	15 Winter	100	+40%	30/15	Summer						53.135	
s3	.000	S10	15 Winter	100	+40%	30/15	Winter						53.772	
s3	.001	S11	15 Winter	100	+40%	30/15	Summer						53.724	
S3	.002	S12	15 Winter	100	+40%	30/15	Summer						53.629	
s3	.003	S13	15 Winter	100	+40%	30/15	Summer						53.532	
S4	.000	S14	15 Winter	100	+40%	100/15	Summer						53.623	
S4	.001	S15	15 Winter	100	+40%	30/15	Summer						53.623	
s3	.004	S16	15 Winter	100	+40%	30/15	Summer						53.473	
S1	.008	S17	15 Winter	100	+40%	30/15	Summer						52.940	
					©19	82-202	0 Inno	ovyze						_

Ove Arup & Partners International I	Page 14	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}{\underline{\text{Storm - Surface Water Main Site}}}$

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
S1.000	S1	1.200	0.321	0.33			14.1	FLOOD	1
S1.000	S2	1.341	0.000	0.76				FLOOD RISK	1
S1.002	S3	1.412	0.000	0.98				SURCHARGED	
S1.003	S4	1.424	0.000	0.48				SURCHARGED	
S2.000	S5	1.060	0.000	0.48			34.5	FLOOD RISK	
S2.001	S6	1.369	0.000	0.84			64.2	FLOOD RISK	
S1.004	s7	1.531	0.000	1.90			104.9	SURCHARGED	
S1.005	S7A	1.436	0.000	1.36			102.4	SURCHARGED	
S1.006	S8	1.358	0.000	1.29			103.3	SURCHARGED	
S1.007	S9	1.266	0.000	1.78			112.2	SURCHARGED	
s3.000	S10	0.907	0.000	0.41			20.0	SURCHARGED	
S3.001	S11	1.157	0.000	0.85			38.9	SURCHARGED	
S3.002	S12	1.221	0.000	0.83			36.5	SURCHARGED	
s3.003	S13	1.272	0.000	1.09			35.9	SURCHARGED	
S4.000	S14	0.554	0.000	0.20			4.1	SURCHARGED	
S4.001	S15	0.667	0.000	1.28			28.8	SURCHARGED	
S3.004	S16	1.268	0.000	1.18			69.0	SURCHARGED	
S1.008	S17	1.135	0.000	2.69			185.7	SURCHARGED	

Ove Arup & Partners International I	Page 15	
The Arup Campus	Hereford Interchange	
Blyth Gate	Surface Water Connection	
Solihull B90 8AE		Micro
Date 18/01/2024 16:34	Designed by Daniel Thomas	Drainage
File Hereford Interchange Drain	Checked by Sion Simpson-Williams	Dialilade
XP Solutions	Network 2020.1.3	

$\frac{\text{100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for}}{\underline{\text{Storm - Surface Water Main Site}}}$

										Water
	US/MH		Return	Climate	First	(X)	First (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)
S5.000	S18	120 Winter	100	+40%	100/120	Winter				52.850
S6.000	S19	120 Winter	100	+40%	100/60	Winter				52.850
S1.009	S20	120 Winter	100	+40%	30/15	Summer				52.849
S7.000	S21	120 Winter	100	+40%	100/60	Winter				52.850
S7.001	S22	120 Winter	100	+40%	100/15	Summer				52.849
S7.002	S23	120 Winter	100	+40%	30/120	Winter				52.847
S1.010	S24	120 Winter	100	+40%	30/15	Summer				52.844
S8.000	S25	120 Winter	100	+40%	30/15	Summer				52.842
S1.011	S26	120 Winter	100	+40%	2/15	Summer				52.850
S1.012	S27	120 Winter	100	+40%						51.065
S1.013	S28	240 Summer	100	+40%						50.968
S1.014	S29	360 Summer	100	+40%						50.850

PN	US/MH Name	Surcharged Depth (m)			Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status	Level Exceeded
S5.000	S18	0.116	0.000	0.26			4.0	SURCHARGED	
S6.000	S19	0.187	0.000	0.18			3.6	SURCHARGED	
S1.009	S20	1.120	0.000	0.72			91.6	SURCHARGED	
S7.000	S21	0.205	0.000	0.09			8.1	SURCHARGED	
S7.001	S22	0.473	0.000	0.37			24.4	SURCHARGED	
S7.002	S23	0.590	0.000	0.20			32.8	SURCHARGED	
S1.010	S24	1.376	0.000	0.15			17.3	SURCHARGED	
S8.000	S25	0.792	0.000	0.60			13.4	SURCHARGED	
S1.011	S26	1.636	0.000	0.55			15.6	SURCHARGED	
S1.012	S27	-0.117	0.000	0.47			15.6	OK	
S1.013	S28	-0.118	0.000	0.46			15.6	OK	
S1.014	S29	-0.099	0.000	0.60			15.6	OK	