

Proposed Residential Development

School Road, Tarrington

Flood Risk Assessment

Final Report for

Stoke Edith Estate

January 2017

Hydrock Ref: C-05818-C BIM Ref: TAR-HYD-XX-XX-RP-D-5001

DOCUMENT CONTROL SHEET

Issued by:	Hydrock Consultants Limited
	Over Court Barns
	Over Lane
	Almondsbury
	Bristol
	BS32 4DF
	Tel: 01454 619533
	Fax: 01454 614125
	www.hydrock.com
Client:	Stoke Edith Estate
Project:	Proposed Residential Development – School Road, Tarrington
Title:	Flood Risk Assessment
Status:	Final
Date:	January 2017

Document Production Record

Issue Number:	P1.2-S0	Name	Signature
Prepared		Jon Cracknell BSc, MSc Senior Flood Risk Consultant	
Checked		David Lloyd BSc, PhD Technical Director — Flood Risk	
Approved		David Lloyd BSc, PhD Technical Director — Flood Risk	

Document Revision Record

lssue number	Date	Revision Details
P1.1-S0	24 th January 2017	Draft
P1.2-S0	31 st January 2017	Final

Hydrock Consultants Limited has prepared this report in accordance with the instructions of the above named client for their sole and specific use. Any third parties who may use the information contained herein do so at their own risk.

CONTENTS

1.0	INTRODUCTION	2
2.0	SITE INFORMATION	3
2.1	Location	3
2.2	Existing Site	3
2.3	Topography	3
2.4	Proposed Development	3
3.0	ASSESSMENT OF FLOOD RISK	4
3.1	Fluvial and Tidal Flooding	4
3.2	Surface Water Flooding	5
3.3	Groundwater Flooding	5
3.4	Infrastructure Failure Flooding	5
4.0	NPPF REQUIREMENTS	6
4.1	Sequential Test	6
4.2	Exception Test	6
5.0	SURFACE WATER MANAGEMENT	7
5.1	Pre-development	7
5.2	Post-development	7
6.0	FOUL WATER MANAGEMENT	9
6.1	Pre-development	9
6.2	Post-development	9
7.0	CONCLUSIONS 1	.0

APPENDICES

APPENDIX A	Site Drawings
APPENDIX B	Surface & Foul Water Management Calculations & Drawings

1.0 INTRODUCTION

This report has been prepared by Hydrock on behalf of Stoke Edith Estate in support of a planning application to be submitted to Herefordshire Council for the proposed residential development of land off School Road, Tarrington.

This Flood Risk Assessment report has been prepared to address the requirements of the *National Planning Policy Framework (NPPF)*, through:

- Assessing whether the site is likely to be affected by flooding.
- Assessing whether the proposed development is appropriate in the suggested location.
- Presenting any flood risk mitigation measures necessary to ensure that the proposed development and occupants will be safe, whilst ensuring flood risk is not increased elsewhere.

The report considers the requirements for undertaking a Flood Risk Assessment as detailed in the *NPPF*.

2.0 SITE INFORMATION

2.1 Location

Table. 1: Site Referencing Information

Site Address	Land off School Road, Tarrington, HR1 4EX			
Grid Reference	SO 61664 40615			

The site is located within the centre of Tarrington, a village located approximately 10.5km to the east of Hereford. A site location plan is included in Appendix A.

2.2 Existing Site

The site currently comprises a grassed field utilised for pasture use.

The site is bounded by agricultural land to the northwest; residential properties and garden areas to the northeast, east and west; and, School Road to the south, with a residential property and garden area beyond.

2.3 Topography

The high point of the site, and local area, is located in the southwestern corner of the site at approximately 90.5m AOD, from which point ground levels fall toward the northern, eastern and southern site boundaries, at 83.0m AOD, 82.0m AOD and 85.0 respectively.

A topographical survey of the site is included in Appendix A.

2.4 Proposed Development

The scheme proposes the residential development of the site, along with associated infrastructure and landscaping. Access is to be provided off School Road.

A proposed site layout plan is included in Appendix A.

3.0 ASSESSMENT OF FLOOD RISK

3.1 Fluvial and Tidal Flooding

3.1.1 Flood Zone Mapping

The entirety of the site and surrounding area is shown to be within Flood Zone 1, i.e. land at low risk of fluvial and tidal flooding.

3.1.2 Tarrington Brook

A small Brook flows northwards parallel to the eastern site boundary, known for the purposes of this report as the Tarrington Brook. The Brook flows in culvert beneath School Road up- and down-stream of the site, and in open channel adjacent to the site.

The EA's Surface Water Flood Risk mapping, as shown in Figure 1 below, indicates that the majority of flows are contained within the channel of the Brook, with the exception of some minor out of bank flooding within the very southeastern corner of the site.

Figure 1: EA Surface Water Flood Risk Mapping

The topographical survey and a site walkover survey indicate that the Brook is relatively incised, with ground levels rising across the site from the eastern site boundary / the Tarrington Brook. Such topography will contain any out of bank flows from the Brook within the immediate vicinity of the channel, as evidenced by the EA's Surface Water Flood Risk mapping, as shown above.

Based on this, the site is considered to be at low risk of fluvial flooding / flooding from the Tarrington Brook.

3.1.3 Tidal

Noting the elevation and location of the area, the site is concluded to be at negligible risk of tidal flooding.

3.2 Surface Water Flooding

Given that the site occupies a locally elevated position, any surface water run-off is unlikely to be directed onto the site, but rather be directed around the site (including along a ditch running parallel with the southern site boundary / School Road) and towards surrounding lower lying areas and/or the Tarrington Brook.

As such, the site is considered to be at low risk of surface water flooding, as evidenced by the EA's Surface Water Flood Risk mapping (shown in Figure 1).

3.3 Groundwater Flooding

British Geological Survey mapping shows the site to be underlain by the Raglan Mudstone Formation comprising Siltstone and Mudstone. The higher portion of the site is shown to be underlain by Sandstone of the Raglan Mudstone Formation.

To the south of the site, where ground levels rise towards Seager Hill, there are shown to be a series of geologies, with the lowest layer (i.e. that immediately overlying the Raglan Mudstone Formation) comprising Sandstone and Siltstone of the Downton Castle Sandstone Formation.

Given the presence of permeable geologies overlying lower permeability geology, there is the potential for groundwater emergence at these geological boundaries. If any groundwater emergence were to occur within or adjacent to the site, any such water will run-off and be directed downslope off-site and/or towards the Tarrington Brook. As such, the flood risk posed by the Brook is considered a suitable indication of the potential worst-case groundwater flooding scenario.

Consequently, whilst there is the potential for groundwater emergence and resulting shallow overland groundwater flows through the site, there is considered to be a low risk of groundwater flooding / 'ponding' within the site.

3.4 Infrastructure Failure Flooding

Similarly to the assessment of surface water flooding, any surcharged sewer flows generated within the vicinity of the site are unlikely to be directed onto the site, but rather be directed around the site and towards surrounding lower lying areas and/or the Tarrington Brook.

No other potential sources of infrastructure failure flooding, such as reservoirs or canals, were identified within the immediate vicinity, or upstream, of the site, and as such, the site is considered to be at low risk of infrastructure failure flooding.

Hydrock Consultants

4.0 NPPF REQUIREMENTS

4.1 Sequential Test

This assessment has demonstrated that the site is on land designated as Flood Zone 1 by the EA's Flood Zone Mapping.

The *NPPF* considers residential development as 'more vulnerable development' in respect of flood risk.

The *NPPF* Flood Risk Vulnerability and Flood Zone Compatibility matrix (Table 3) indicates that 'more vulnerable' development is appropriate in Flood Zone 1 and accordingly the proposed development is concluded to meet the requirements of the Sequential Test.

4.2 Exception Test

Whilst an Exception Test is not explicitly required under the *NPPF*, due to the site being demonstrated to pass the Sequential Test, the following section details any measures necessary to mitigate any residual flood risks, to ensure that the proposed development and occupants will be safe and that flood risk will not be increased elsewhere, akin to the requirements of the second section of the Exception Test.

4.2.1 Resistance and Resilience of Proposed Buildings

In order to afford the site some protection from potential groundwater emergence overland flows through the site, and any other residual risks, finished floor levels will be set a minimum 300mm above adjacent infrastructure thoroughfare levels. The proposed highway and building layout has also been designed to create preferential overland flow routes through the site and towards the Tarrington Brook, i.e. any overland flows will be preferentially directed along the proposed access roads, away from dwellings, and towards the Tarrington Brook.

4.2.2 Safe Access and Egress

Access to the site will be via a new access off School Road. Westwards from this point, a short section of School Road is indicated by the EA's Surface Water Flood Risk mapping to be at 'low risk' of surface water flooding to a depth <300mm.

However, based on the 'low risk' designation combined with the minimal potential depth of flooding, safe access and egress is still considered feasible to and from the site, westwards along School Road.

4.2.3 Flood Risk within Catchment

The proposed development of the site will not result in a loss of floodplain storage, given that no ground raising works or new structures are proposed within areas potentially at risk of flooding from the Tarrington Brook.

A minimum 5.0m easement will be provided from any proposed buildings to the top of bank of the adjacent Tarrington Brook.

5.0 SURFACE WATER MANAGEMENT

5.1 Pre-development

The site is entirely 'greenfield' and it has been assumed, based on existing site use, that there are no existing engineered public surface drainage systems within the site boundary.

Sewer record plans have been obtained from Welsh Water and these confirm that there are no public surface water sewers within the site boundary. However, it should be noted that there may be private drains present which are not recorded.

As such, currently rainfall will either infiltrate into the ground or, if run-off is generated, be directed to the perimeter of the site and existing watercourses (specifically the Tarrington Brook).

5.2 Post-development

5.2.1 Proposed Strategy

The proposed development will create impermeable areas within the site and as such, without management, could increase both the volume and rate of surface water run-off.

A Site Investigation is not currently available. However, reference to the Cranfield University 'Soilscapes' website indicates that the underlying soils are 'slightly acid loamy and clayey soils with impeded drainage'. A walkover of the site identified areas of soft boggy ground which also indicates a non-permeable nature. On this basis it is assumed that infiltration to ground will not be a viable method of surface water disposal.

As the existing 'natural' drainage from the site is directed towards the Tarrington Brook, it is proposed to retain this drainage regime and discharge the post-development surface water runoff from the site to the Brook. The maximum discharge rate will be limited to the equivalent undeveloped 'greenfield' run-off rate and the excess volume of water stored on site.

The existing 'greenfield' run-off rate has been calculated using the industry standard software *MicroDrainage*. The current QBAR 'greenfield' run-off rate has been calculated as 3.4l/s/ha. A copy of the calculations is included in Appendix B.

The proposed surface water drainage system will include attenuation storage for up to the 1 in 100 year + 40% storm event.

The proposed impermeable area has been measured from the proposed Masterplan and an allowance of +10% for 'urban creep' factored into the calculation in accordance with the recommendations of clause 24.7.2 of the *CIRIA SUDS Manual*. However, the proposed discharge rate calculations have been based on the measured area only.

The total proposed post-development impermeable area is 0.326ha, excluding the 'urban creep', meaning a proposed discharge rate of 1.1l/s. However, the minimum practical flow rate for a control is 2l/s, as smaller rates are prone to blockage. As such, the minimum proposed discharge rate has been set at 2l/s for the purposes of this design.

It is proposed to provide an attenuation basin in the southeast corner of the site prior to the controlled discharge to the Brook. Due to the restricted area available, the basin volume will be supplemented by the provision of additional 1.5m x 1.5m box culverts under proposed highway areas.

The proposed surface water drainage strategy plan is included in Appendix B, along with copies of relevant *MicroDrainage* calculations.

5.2.2 Water Quality

Surface water run-off from the proposed development will, by its nature, contain certain contaminants. In order to reduce the impact of these on the receiving watercourse, a number of measures are proposed, as follows:

- Trapped gulleys to all highways.
- Provision of permeable paving with a 'clean stone' sub-base to all private hardstanding areas.
- An attenuation basin near the outfall point.

The above measures should ensure that there are no elevated concentrations of contaminants being discharged from the site.

6.0 FOUL WATER MANAGEMENT

6.1 Pre-development

The site is entirely 'greenfield' and it has been assumed, based on existing site use, that there are no existing engineered public foul drainage systems within the site boundary.

Sewer record plans have been obtained from Welsh Water and these confirm that there are no public foul water sewers within the site boundary. However, it should be noted that there may be private drains present which are not recorded.

The nearest foul sewer is located within the rear gardens of the houses to the east of the site. There is also a foul sewer manhole located in School Road near the southeastern corner of the site.

6.2 Post-development

The proposed development will be drained via a separate foul sewer which will be offered for adoption to Welsh Water.

It is proposed to connect to the existing public foul manhole, reference SO61407501, in School Road to the southeast of the site. The invert level of this manhole is not recorded. However, from an inspection of the site survey, it is considered unlikely that it will be possible to connect to this sewer by gravity. It is therefore proposed to provide a foul pumping station which will then discharge via a rising main to the public sewer.

The proposed foul water drainage strategy plan is included in Appendix B.

Based on *Sewers for Adoption* 7th *Edition*, the peak flow rate from the proposed 15 unit development is anticipated to be 0.7l/s.

It will also be necessary to provide a storage volume at the proposed foul pumping station for emergency storage in case of pump failure. The standard requirement is to provide 160l/dwelling, equating to approximately 2.4m³ in this instance. This volume can be accommodated in a separate tank located immediately adjacent to the station or by oversizing the wet well.

The proposal to discharge foul water from the site to the existing public foul water sewer will be subject to Welsh Water approval / capacity.

7.0 CONCLUSIONS

This report has considered the flood risk posed to the proposal site from a variety of sources of flooding.

The entirety of the site is confirmed to be within Flood Zone 1, and at low risk of flooding from all other potential flood sources considered. There was however identified the potential for groundwater emergence and resulting shallow overland groundwater flows through the site, though there is considered to be a low risk of any groundwater flooding / 'ponding' within the site.

The application is concluded to meet the requirements of the Sequential and Exception Tests.

Finished floor levels will be set a minimum 300mm above adjacent infrastructure thoroughfare levels, and the proposed highway and building layout has also been designed to create preferential overland flow routes through the site and towards the Tarrington Brook. Such measures are intended to afford the site some protection from potential groundwater emergence overland flows through the site, and any other residual risks.

Safe access and egress has also been demonstrated to and from the site, as well as the fact that the proposed scheme will not result in a loss of floodplain storage and provide an appropriate easement to the adjacent Tarrington Brook.

Surface and foul water drainage strategies have also been proposed, involving at attenuated discharge to the adjacent Tarrington Brook, and a pumped discharge to Welsh Water's existing public foul water sewer network respectively.

This report therefore demonstrates that the proposed scheme:

- Is suitable in the location proposed.
- Will be adequately flood resistant and resilient.
- Will not place additional persons at risk of flooding, and will offer a safe means of access and egress.
- Will not increase flood risk elsewhere as a result of the proposed development through the loss of floodplain storage or impedance of flood flows.
- Will put in place measures to ensure surface and foul water is appropriately managed.

As such, the application is concluded to meet the flood risk requirements of the NPPF.

Hydrock Consultants Limited

APPENDIX A SITE DRAWINGS

Drawing No.	Title
-	Location Plan
4961-20JAN17-01	Topographical Survey
-	Proposed Site Plan

50 Metres 20 30 40 50

Scale 1:1250

Rupert Foley - Land North of School Lane, Tarrington

SITE AREA = 1.5 HA / 3.85 AC

56 160 00 240520N	361 640E	361 <u>660E</u>	361 <u>680E</u>	361 <u>700E</u>	361720E	361 <u>740E</u>	361760E 240520N
 Notes Datum : Ordnance Survey Level datum via OS Active GPS Network Survey Grid : Ordnance Survey National Grid Co-ordinates derived via OS Active GPS Network. Survey contents correct as of date of survey and survey undertaken to agreed specification All critical dimensions to be checked prior to site works All kerb levels shown are channel levels Drainage and Service covers : Covers buried or obscured at the time of the survey are not shown. Manholes have not been entered for safety reasons and all pipe diameters are estimated from the surface. Drainage pipe diameters are in millimetres, eg. D100 means a 100mm diameter pipe. The flow type stated is based on visual evidence seen from the surface at the time of the survey. All internal manhole details should be confirmed by the contractor on site prior to site works. Trees : For concentric spread trees the spread plotted is an average value drawn to scale to the nearest metre. The minimum individual diameter surveyed is 0.15m at 1m up the trunk from the ground. Trunk diameters are not plotted to size. General species are only stated where noted. A qualified arboriculturalist should be consulted for species type and condition. Heights (when requested) are approximate to the nearest metre. 	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	SCK Stop Cock SOF Soffit Level ST/W Stone Wall SV Sluice Valve SVP Soil Vent Pipe TEL Call Box (telephone) TH Threshold Level TL Traffic Light TP Telegraph Pole TV Cable Television UTL Unable to Lift (Cover) V Valve (Unknown Type) VP Vent Pipe tric W-HT Top of Wall Level WL Water Level phone WM Water Meter er W/M Wire Mesh Fence WO Washout Valve WV Water Valve	Tree AbbreviationsALDAlderBCHBeechCEDCedarCHECherryCYPCypressEUCEucalyptusFACFalse AcaciaRTFruitHAWHawthornHOLHollyHOAKHolm OakHORNHorse ChestnutLARLarchLAULaurelMAPMaplePLNLondon PlanePOPPoplarRHORhododendronROWRowanSALSallowSBSilver BirchSPRSpruceSCHSweet ChestnutWBMWhitebeamWILWillow	Northing Level 0568.372 87.987 0543.927 86.944 0547.937 85.417 0662.827 85.144 0626.796 89.874 0687.694 78.511	A D Horner Limited Land and Measured Building Surveyors 51 Bridge Street Pershore Worcestershire WR10 1AL Telephone: 01386-555486 Website: www.adhorner.co.uk E-mail: enquiries@adhorner.co.uk	Title Field north side of School Road, Tarring Client Rural Solutions Date January 2017 Plot scale 1 : 200 on A0 Sheet Digital scale 1 CAD unit : 1 metre Surveyed LM O metres 0 metres 10 N Ordnance Survey Grid North C. A.D.Horner Limited 2017	gton, Herefordshire HR1 4EX Drawing No. 4961-20JAN17-01 Revision

PROPOSED SITE PLAN - 1:1000 @ A3

Rural Solutions

Pond

Proposed site entrance

New footpath

Pumping station

Buff-coloured, resinbound gravel

Turning head

Existing landscape buffer

APPENDIX B SURFACE & FOUL WATER MANAGEMENT CALCULATIONS & DRAWINGS

Drawing No.	Title
-	MicroDrainage – ICP SUDS Mean Annual Flood Calculations
TAR-HYD-XX-XX-DR-C-2200-P1	Proposed Surface & Foul Water Drainage Strategy
-	MicroDrainage – Network Calculations

Hydrock Consultants Ltd				
•	C-05818-C Tarrington			
	Greenfield Runoff Rates	4		
	100year+cc	Micco		
Date 2017.01.25	Designed by EAG			
File	Checked by RJH	Diamaye		
XP Solutions	Source Control 2014.1	1		

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	ears)	100		Soil	0.40	00
	Ar	rea	(ha)	1.000		Urban	0.00	00
	SA	AR	(mm)	700	Region	Number	Region	9

Results 1/s

QBAR Rural 3.4 QBAR Urban 3.4 Q100 years 7.4 Q1 year 3.0 Q30 years 6.0 Q100 years 7.4

Hydrock Consultants Ltd				
•	C-05818-C Tarrington			
	SW network	4		
	100year+40cc	Micco		
Date 2017.01.27	Designed by EAG			
File SW Network_v2.mdx	Checked by RJH	Digitigh		
XP Solutions	Network 2014.1			

Time Area Diagram for Existing

Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)
0-4	0.281	4-8	0.073

Total Area Contributing (ha) = 0.353

Total Pipe Volume (m³) = 152.717

Hydrock Consultants Ltd					
•	C-05818-C Tarrington				
	SW network	4 a			
	100year+40cc	Micco			
Date 2017.01.27	Designed by EAG				
File SW Network_v2.mdx	Checked by RJH	Diamada			
XP Solutions	Network 2014.1				

Existing Network Details for Existing

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l/s)	k (mm)	HYD SECT	DIA (mm)
E1.000	17.026	0.085	200.0	0.040	5.00	0.0	0.600	0	225
E2.000	8.818	3.044	2.9	0.038	5.00	0.0	0.600	0	225
E1.001 E1.002	20.328 32.040 20.197	0.102 0.986	200.0 32.5	0.024 0.077	0.00	0.0 0.0	0.600	0 0	300 300 -29
E1.003 E1.004 E1.005 E1.006 E1.007	15.238 11.958 10.729 7.611 5.000	0.076 0.060 0.053 0.038 0.025	200.5 199.3 202.4 200.3 200.0	0.042 0.040 0.018 0.019 0.000	0.00 0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0 0.0	0.600 0.600 0.600 0.600 0.600	[] [] [] [] 0	-29 -29 -29 -29 -29 150

Network Results Table

PN	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Vel (m/s)	Cap (1/s)
E1.000	84.000	0.040	0.0	0.92	36.6
E2.000	86.150	0.038	0.0	7.74	307.9
E1.001 E1.002	83.915 83.813	0.102 0.179	0.0	1.11 2.77	78.3 195.6
E3.000	82.928	0.055	0.0	3.03	6817.2
E1.003 E1.004 E1.005 E1.006	82.827 82.751 82.691 82.638	0.276 0.316 0.334 0.353	0.0 0.0 0.0 0.0	3.03 3.03 3.01 3.03	6808.2 6828.7 6775.4 6811.8
E1.007	82.600	0.353	0.0	0.71	12.5

Conduit Sections for Existing

NOTE: Diameters less than 66 refer to section numbers of hydraulic conduits. These conduits are marked by the symbols:- [] box culvert, \/ open channel, oo dual pipe, ooo triple pipe, 0 egg.

Section numbers < 0 are taken from user conduit table

Section Number	Conduit Type	Major Dimn. (mm)	Minor Dimn. (mm)	Side Slope (Deg)	Corner Splay (mm)	4*Hyd Radius (m)	XSect Area (m²)
-29	[]	1500	1500	90.0		1.500	2.250

Hydrock Consultants Ltd					
•	C-05818-C Tarrington				
	SW network	L.			
	100year+40cc	Micco			
Date 2017.01.27	Designed by EAG				
File SW Network_v2.mdx	Checked by RJH	Dialitatje			
XP Solutions	Network 2014.1				

Manhole Schedules for Existing

MH Name	MH CL (m)	MH Depth (m)	Conr	MH	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
E1	85.500	1.500	Open	Manhole	1200	E1.000	84.000	225				
E2	87.650	1.500	Open	Manhole	1200	E2.000	86.150	225				
E2	87.150	4.044	Open	Manhole	1200	E1.001	83.915	300	E1.000	83.915	225	
									E2.000	83.106	225	
ЕЗ	87.750	3.937	Open	Manhole	1200	E1.002	83.813	300	E1.001	83.813	300	
E4	88.050	5.122	Open	Manhole	2400	E3.000	82.928	-29				
E4	86.950	4.123	Open	Manhole	2400	E1.003	82.827	-29	E1.002	82.827	300	
									E3.000	82.827	-29	
E5	85.750	2.999	Open	Manhole	2400	E1.004	82.751	-29	E1.003	82.751	-29	
Ε6	85.650	2.959	Open	Manhole	2400	E1.005	82.691	-29	E1.004	82.691	-29	
Ε7	86.700	4.062	Open	Manhole	2400	E1.006	82.638	-29	E1.005	82.638	-29	
E10	84.100	1.500	Open	Manhole	1200	E1.007	82.600	150	E1.006	82.600	-29	
Е	84.000	1.425	Open	Manhole	0		OUTFALL		E1.007	82.575	150	

Hydrock Consultants Ltd		Page 4
•	C-05818-C Tarringto	on 🔽
•	SW network	4
	100year+40cc	Micco
Date 2017.01.27	Designed by EAG	
File SW Network_v2.mdx	Checked by RJH	Diamaye
XP Solutions	Network 2014.1	
<u>Area Si</u>	ummary for Existing	
Number Type Name (MP Gross Imp. %) Area (ha) Area (ha)	(ha)
Humber Type Hume (o, mea (na, mea (na)	()
1.000 1	.00 0.040 0.040	0.040
2.000 1	0.038 0.038	0.038
1.001 1	00 0.024 0.024	0.024
3 000 1		0.055
1 003 1	00 0.042 0.042	0.042
1.004 1	00 0.040 0.040	0.040
1.005 1	0.018 0.018	0.018
1.006 User - 1	.00 0.019 0.019	0.019
1.007 1	.00 0.000 0.000	0.000
	Total Total	Total
	0.353 0.353	0.353
Free Flowing O	utfall Details for B	Existing
Outfall Outfall C	Level I Level Min	DT. W
Pipe Number Name	(m) (m) I. Level Min	vel (mm) (mm)
-	(m)	
E1.007 E	84.000 82.575 82.5	575 0 0
Simulation	Criteria for Exist	ing
Volumetric Bunoff Coeff	0 750 Additional Flow	- % of Total Flow 0 000
Areal Reduction Factor	1.000 MADD Factor	* 10m ³ /ha Storage 0.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0 Flow per Person p	er Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000 Outp	out Interval (mins) 1
Number of Input Hydrogr	aphs () Number of Storad	ne Structures 1
Number of Online Cont	rols 1 Number of Time/A	Area Diagrams 0
Number of Offline Cont	rols 0 Number of Real 7	Time Controls 0
Synthet	ic Rainfall Details	
Rainfall Model	FSR I	Profile Type Summer
Return Period (years)	100	Cv (Summer) 0.750
Region Engla	und and Wales	Cv (Winter) 0.840
M5-60 (mm)	19.800 Storm Dura	ation (mins) 30
Ratio R	0.400	
©1982-	-2014 XP Solutions	
01902		

Hydrock Consultants Ltd					Page 5
•	C-05818	-C Tarring	ton		
	SW netw	ork			4
	100year	+40cc			Micco
Date 2017.01.27	Designe	d by EAG			
File SW Network_v2.mdx	Checked	by RJH			Diamada
XP Solutions	Network	2014.1			
<u>Online C</u> Hydro-Brake Optimum® Manhole	ontrols e: E10,	for Existi DS/PN: E1.	<u>.ng</u> 007, Vol	ume (m³)): 14.8
Unit Desig Design Dia Invert Minimum Outlet Pipe Dia Suggested Manhole Dia	Referenc n Head (m Flow (l/s Flush-Flo Objectiv meter (mm Level (m meter (mm meter (mm	e MD-SHE-006)) m e Minimise)))	2-2000-14 Cal upstream	00-2000 1.400 2.0 culated storage 62 82.600 75 1200	
Control Po	ints	Head (m) F	low (l/s)		
Design Point (Ca H Mean Flow over H The hydrological calculations have b Hydro-Brake Optimum® as specified. Hydro-Brake Optimum® be utilised the invalidated	Alculated) Flush-Flo ^m Kick-Flo Head Range een based Should an n these s	1.400 0.272 0.553 0.553 0.01 the Head other type of torage routi	2.0 1.6 1.3 1.6 /Discharge f control ng calcula	e relatio device o ations wi	nship for the ther than a 11 be
Depth (m) Flow (1/s) Depth (m) Flow	7 (1/s) De	epth (m) Flo	w (l/s) De	epth (m)	Flow (l/s)
0.1001.41.2000.2001.61.4000.3001.61.6000.4001.61.8000.5001.52.0000.6001.42.2000.8001.62.4001.0001.72.600	1.9 2.0 2.1 2.2 2.4 2.5 2.6 2.7	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500	2.8 3.0 3.2 3.4 3.6 3.8 3.9 4.1	7.000 7.500 8.000 8.500 9.000 9.500	4.2 4.4 4.5 4.6 4.7 4.9
©1982-	-2014 XP	Solutions			

Hydrock Consultants Ltd					
•	C-05818-C Tarrington				
	SW network	4			
	100year+40cc	Micco			
Date 2017.01.27	Designed by EAG				
File SW Network_v2.mdx	Checked by RJH	Dialitatje			
XP Solutions	Network 2014.1				

<u>Storage Structures for Existing</u>

Tank or Pond Manhole: E10, DS/PN: E1.007

Invert Level (m) 82.600

Depth (m) Area (m²) Depth (m) Area (m²) Depth (m) Area (m²) 0 000 2 6 1 400 153 5 2 800 0 4 200 0 0

0.000	2.6	1.400	153.5	2.800	0.0	4.200	0.0
0.200	12.5	1.600	0.0	3.000	0.0	4.400	0.0
0.400	29.6	1.800	0.0	3.200	0.0	4.600	0.0
0.600	49.5	2.000	0.0	3.400	0.0	4.800	0.0
0.800	71.9	2.200	0.0	3.600	0.0	5.000	0.0
1.000	96.8	2.400	0.0	3.800	0.0		
1.200	123.9	2.600	0.0	4.000	0.0		
						1	

Hydrock Consultants Ltd						
•	C-05818-C Tarrington					
•	SW network					
•	100year+40cc	Mirro				
Date 2017.01.27	Designed by EAG	Nrainano				
File SW Network_v2.mdx	Checked by RJH	Diamage				
XP Solutions	Network 2014.1					
<u>l year Return Period Summary of</u>	<u>Critical Results by Maximum Leve</u> for Existing	el (Rank 1)				
<u>Sim</u> Areal Reduction Factor 1 Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) C Foul Sewage per hectare (l/s) C	Mulation Criteria .000 Additional Flow - % of Total Fl 0 MADD Factor * 10m³/ha Stora 0 Inlet Coeffiecie .500 Flow per Person per Day (1/per/da .000	ow 0.000 ge 0.000 nt 0.800 y) 0.000				
Number of Input Hydrogra Number of Online Cont: Number of Offline Cont:	aphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Real Time Controls 0					
Synthe Rainfall Model	tic Rainfall Details FSR Ratio R 0 400					
Region Eng	land and Wales Cv (Summer) 0.750					
M5-60 (mm)	19.800 Cv (Winter) 0.840					
Margin for Flood Risk W	arning (mm) 300.0 DVD Status OFF					
Analys	is Timestep Fine Inertia Status OFF					
	DTS Status ON					
Profile(s) Duration(s) (mins)	Summer and Win 15, 30, 60, 120, 180, 240, 360, 480, 6	iter				
	720, 960, 1440, 2160, 2880, 4320, 57	60,				
Return Period(s) (years) Climate Change (%)	7200, 8640, 10 1, 30, 0, 0,	080 100 40				
Return Clim	ate First X First Y First Z O/F	Lvl				
PN Storm Period Char	nge Surcharge Flood Overflow Act.	Exc.				
E1.000 15 Winter 1	0%					
E2.000 15 Winter 1 E1 001 15 Winter 1	0% 0%					
E1.002 15 Winter 1	0%					
E3.000 180 Winter 1	0%					
E1.003 180 Winter 1	0%					
E1.004 180 Winter 1 E1.005 180 Winter 1	08					
E1.006 180 Winter 1	0%					
E1.007 180 Winter 1	0% 1/15 Summer					
Water	Flooded Pipe					
US/MH Level Surch'e	d Volume Flow / O'flow Flow					
PN Name (m) Depth (n	n) (m ³) Cap. (l/s) (l/s) Statu	s				
E1.000 E1 84.062 -0.1	63 0.000 0.17 0.0 5.4	OK				
E2.000 E2 86.173 -0.2	02 0.000 0.02 0.0 5.2	OK				
E1.001 E2 84.006 -0.2	0.000 0.20 0.0 13.4	OK				
E1.002 E3 83.884 -0.23	29 0.000 0.13 0.0 22.3	OK				
E3.000 E4 83.127 -1.3	0.000 0.00 0.0 1.7	OK				
E1.003 E4 83.127 -1.2	0.000 0.00 0.0 7.4	UK				
©1982-	2014 XP Solutions					

Hydrock Consultants Ltd				
•	C-05818-C Tarrington			
	SW network	<u>Y</u>		
	100year+40cc	Micco		
Date 2017.01.27	Designed by EAG			
File SW Network_v2.mdx	Checked by RJH	Diamarje		
XP Solutions	Network 2014.1			

<u>1 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Existing</u>

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
E1.004	E5	83.127	-1.124	0.000	0.00	0.0	7.2	OK
E1.005	E6	83.128	-1.063	0.000	0.00	0.0	6.1	OK
E1.006	E7	83.128	-1.010	0.000	0.00	0.0	5.1	OK
E1.007	E10	83.128	0.378	0.000	0.16	0.0	1.6	SURCHARGED

Hydrock Consultants Ltd	Page 9									
•	C-05818-C Tarrington									
	SW network									
	100year+40cc									
Date 2017.01.27	Designed by EAG									
File SW Network_v2.mdx	Checked by RJH									
XP Solutions	Network 2014.1									
<u>30 year Return Period Summary of Critical Results by Maximum Level (Rank 1)</u> <u>for Existing</u>										
Sin Areal Reduction Factor : Hot Start (mins) Hot Start Level (mm) Manhole Headloss Coeff (Global) (Foul Sewage per hectare (l/s) (Number of Input Hydrogr Number of Online Cont	<pre>mulation Criteria 1.000 Additional Flow - % of Total Flow 0.000 0 MADD Factor * 10m³/ha Storage 0.000 0 Inlet Coefficcient 0.800 0.500 Flow per Person per Day (1/per/day) 0.000 0.000 aphs 0 Number of Storage Structures 1 rols 1 Number of Time/Area Diagrams 0 rols 0 Number of Ford Time Controls 0</pre>									
Number of Offline Cont	rols 0 Number of Real Time Controls 0									
Rainfall Model	FSR Ratio R 0.400									
Region Eng	(land and Wales Cv (Summer) 0.750									
M5-60 (mm)	19.800 CV (Winter) 0.840									
Margin for Flood Risk V	Warning (mm) 300.0 DVD Status OFF									
Analys	sis Timestep Fine Inertia Status OFF									
	DTS Status ON									
Profile(s)	Summer and Winter									
Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600,										
	720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080									
Return Period(s) (years)	1, 30, 100									
Climate Change (%)	0, 0, 40									
Peturn Clir	nato First X First V First 7 0/F Iv]									
PN Storm Period Cha	nge Surcharge Flood Overflow Act. Exc.									
E1.000 15 Winter 30	0%									
E2.000 IS WINLER SU E1 001 15 Winter 30	0.8									
E1.002 15 Winter 30	0%									
E3.000 600 Winter 30	0%									
E1.003 600 Winter 30	0%									
E1.004 600 Winter 30	0%									
E1.005 600 Winter 30	0%									
E1.006 600 Winter 30	0%									
E1.007 600 Winter 30	0% 1/15 Summer									
Water Flooded Dime										
US/MH Level Surch's	ed Volume Flow / O'flow Flow									
PN Name (m) Depth (m) (m ³) Cap. (1/s) (1/s) Status									
	-									
E1.000 E1 84.107 -0.1	18 0.000 0.41 0.0 13.3 OK									
E2.000 E2 86.183 -0.1	92 U.UUU U.U5 U.U 12.9 OK									
EI.UUI EZ 84.068 -0.1	4/ U.UUU U.5U U.U 34.2 OK									
EI.UUZ ES 83.935 -0.1	.70 0.000 0.34 0.0 60.7 OK									
E1.003 E4 83.576 -0.7	51 0.000 0.00 0.0 7.2 OK									
©1982-	-2014 XP Solutions									

Hydrock Consultants Ltd				
•	C-05818-C Tarrington			
	SW network	<u> </u>		
	100year+40cc	Micro		
Date 2017.01.27	Designed by EAG			
File SW Network_v2.mdx	Checked by RJH	Diginarie		
XP Solutions	Network 2014.1			

30 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Existing

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
E1.004	E5	83.570	-0.681	0.000	0.00	0.0	11.4	OK
E1.005	E6	83.567	-0.624	0.000	0.00	0.0	5.6	OK
E1.006	E7	83.576	-0.562	0.000	0.00	0.0	5.3	OK
E1.007	E10	83.573	0.823	0.000	0.17	0.0	1.7	SURCHARGED

Hydrock Consultants Ltd		Page 11						
•	C-05818-C Tarringto	n 🔽						
•	SW network							
•	100year+40cc	Micro						
Date 2017.01.27	Designed by EAG							
File SW Network_v2.mdx	Checked by RJH	Diamaye						
XP Solutions	Network 2014.1							
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 Manhole Headloss Coeff (Global) 0.500 Number of Input Hydrographs 0 Number of Storage Structures 1 Number of Offline Controls 1 Number of Real Time Controls 0 Synthetic Rainfall Details Rainfall Model FSR Ratio R 0.400 Region England and Wales Cv (Summer) 0.750 M5-60 (mm) 19.800 Cv (Winter) 0.840								
Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Analysis Timestep Fine Inertia Status OFF DTS Status ON Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 180, 240, 360, 480, 600, 720, 960, 1440, 2160, 2880, 4320, 5760, 7200, 8640, 10080 Return Period(s) (years) 1, 30, 100 Climate Change (%) 0, 0, 40								
Return Clim	ate First X First X	Y First Z O/F Lvl						
PN Storm Period Cha	nge Surcharge Flood	Overflow Act. Exc.						
E1.000 15 Winter 100 + E2.000 15 Winter 100 + E1.001 15 Winter 100 + E1.002 600 Winter 100 + E3.000 600 Winter 100 + E1.003 600 Winter 100 + E1.004 600 Winter 100 + E1.005 600 Winter 100 + E1.006 600 Winter 100 + E1.007 600 Winter 100 +	40% 40% 40% 40% 40% 40% 40% 40% 40% 1/15 Summer							
Water	Flooded	Pipe						
US/MH Level Surch'e	d Volume Flow / O'flo	w Flow						
PN Name (m) Depth (m) (m°) Cap. (1/s	(1/S) STATUS						
E1.000 E1 84.193 -0.0	32 0.000 0.74 0.	0 24.1 ОК						
E2.000 E2 86.197 -0.1	$78 ext{ 0.000 ext{ 0.10 ext{ 0.000 e$	0 23.4 OK						
E1.001 E2 84.144 -0.0 E1.002 E3.84.049 -0.0	/⊥ U.UUU U.9U U. 64 0.000 0.06 0	υ οι.ο UK Ο 10 1 Οκ						
E3.000 E4 84.049 -0.3	79 0.000 0.00 0.00 0.	0 2.7 OK						
E1.003 E4 84.049 -0.2	78 0.000 0.00 0.	0 12.2 OK						
©1982-	2014 XP Solutions							
01902								

Hydrock Consultants Ltd				
•	C-05818-C Tarrington			
	SW network	4		
	100year+40cc	Micco		
Date 2017.01.27	Designed by EAG			
File SW Network_v2.mdx	Checked by RJH	Diginarie		
XP Solutions	Network 2014.1			

100 year Return Period Summary of Critical Results by Maximum Level (Rank <u>1) for Existing</u>

PN	US/MH Name	Water Level (m)	Surch'ed Depth (m)	Flooded Volume (m³)	Flow / Cap.	O'flow (l/s)	Pipe Flow (l/s)	Status
E1.004	E5	84.049	-0.202	0.000	0.00	0.0	12.3	OK
E1.005	E6	84.049	-0.142	0.000	0.00	0.0	11.7	OK
E1.006	E7	84.049	-0.089	0.000	0.00	0.0	11.2	OK
E1.007	E10	84.050	1.300	0.000	0.20	0.0	2.0	FLOOD RISK

www.hydrock.com