From: Jonathan Poynton <<u>JonathanP@pontrilastimber.co.uk</u>>
Sent: 28 June 2021 15:13
To: Jenman, Rebecca <<u>Rebecca.Jenman@herefordshire.gov.uk</u>>; <u>healdptnshp@me.com</u>
Cc: <u>healdptnshp@me.com</u>; Hargraves, Philippa <<u>Philippa.Hargraves@herefordshire.gov.uk</u>>
Subject: RE: 210289 - Treatment building

Hi Rebecca

Please find below an update regarding your questions

Vehicle Generation

The new treatment building does not generate significant additional traffic. The plant will take over the majority of work from the existing plant and carry out some additional treatment meaning that we can treat a higher proportion of the timber we produce. It doesn't increase our number of lorries dispatched. We typically have one artic of treatment concentrate delivered per month, in some months of the year this may increase and be two deliveries per month.

Opus Report including Calculations

I have attached the Opus report and calculations that were originally submitted with the first planning application. I have also given details of the Hydro brake that was installed.

Treatment type and Permit

The treatment that we use is Tanalith, this is a copper based pressure treatment process, this will also be used in our new treatment plant. We have an existing A2 permit for treatment on site. I have been working with Philippa Hargreaves of the EA and she has confirmed that the new plant will be an addition to the existing permit.

If I can be of any further help please don't hesitate to contact me

Best regards

Jonathan

Please note that we do not use email to advise of changes to bank details, this will always be done by telephone through the normal contacts. If you do receive such emails please call us to advise. Be alert to prevent fraud.

From: Jenman, Rebecca [mailto:Rebecca.Jenman@herefordshire.gov.uk]
Sent: 24 June 2021 11:55
To: Jonathan Poynton; healdptnshp@me.com
Subject: 210289 - Treatment building

Good morning,

I have been working on application 210189 this morning which is in connection with a new treatment plant at the sawmills. Unfortunately I'm still waiting on a number of consultations and I would like to apologise for the ongoing delay. I have chased a few up this morning and hope that I will receive comments from the EHO on air quality later this week. Highways and Drainage have asked for some further information so they can assess the impacts of the development. The information requested is as follows:

- Details of vehicle generation from the proposed development, average existing vehicle movements also needed for a comparison;
- a copy of the full Opus Report (including calculations) referred to in the FRA.

If you could also confirm for me if the type of treatment which the development will accommodate and if this already occurs at the site or if this is a new process being introduced to the site. The EHO Officer believes that the process does not currently occur at the site and will require a Local Authority A2 permit.

If you could let me have this information at your earliest convenience and I will continue to keep you updated.

Regards

Rebecca

Rebecca Jenman

Principal Planning Officer Minerals and Waste Development Management Economy, Environment & Culture Herefordshire Council

Email: rjenman@herefordshire.gov.uk

Council's Homepage www.herefordshire.gov.uk

Save paper - please only print out this message if you really need to

"Any opinion expressed in this e-mail or any attached files are those of the individual and not necessarily those of Herefordshire Council or Wye Valley NHS Trust. You should be aware that Herefordshire Council and Wye Valley NHS Trust monitors its email service. This e-mail and any attached files are confidential and intended solely for the use of the addressee. This communication may contain material protected by law from being passed on. If you are not the intended recipient and have received this e-mail in error, you are advised that any use, dissemination, forwarding, printing or copying of this e-mail is strictly prohibited. If you have received this e-mail in error please contact the sender immediately and destroy all copies of it."

Please note that we do not use email to advise of changes to bank details, this will always be done by telephone through the normal contacts. If

you do receive such emails please call us to advise. Be alert to prevent fraud.

From: Laura K. Curnow <Laura.Curnow@opusinternational.co.uk>
Sent: 07 July 2014 13:01
To: healdptnshp (healdptnshp@me.com) <healdptnshp@me.com>; Jonathan Poynton <JonathanP@pontrilastimber.co.uk>
Subject: C8352 - Pontrilas: Drainage Design Statement
Importance: High

Hi both,

Drainage Design Statement for Planning Submission;

The proposed surface water drainage design will be undertaken in accordance with Building Regulations, Document H. As such, the disposal method has been considered in a sequential manner. Soakaway testing was undertaken in accordance with BRE Digest 365 and deemed unviable to cater for the vast hardstanding area generating surface water run-off. Consequently, it is instead proposed to discharge to the nearest watercourse; Worm Brook which runs along the western boundary of the site.

It is proposed to restrict discharge via complex flow control to the site's greenfield run-off rate. With reference to the attached calculations, this has been determined as 9.0l/s/ha (Qbar) which will be applied to storms up to a 1 in 30 year return period and for storms in excess of this increasing up to a limit of 19.6l/s/ha. Storage provision will be met by a series of ponds along the northern site boundary which will all be sited above and outside of the 1 in 100 year flood level. The ponds will cascade into each other once full via high water level overflows. Retention of the 1 in 100 year return period storm event of 6 hour duration (with a 30% allowance for climate change) on-site will be met in accordance with Ciria C697, SUDs Manual. A series of sluice gates will enable the ponds to be manually drained after a significant storm event and provide an emergency drain down facility.

Water quality measures will include the installation of Class 1, alarmed petrol interceptors to lorry and car park areas in accordance with the EA's PPG3. Furthermore, the filtration system through the biological ponds will further enhance and treat the discharge – please refer to Biological Design for further information.

The biological wetland area within the western end flood zone will be profiled below existing ground level thus providing additional flood storage capacity – cut / fill volumetric analysis will be provided to further evidence this.

Kind regards, Laura

Laura Curnow CEng MICE | Senior Engineer | Opus International Consultants (UK) Ltd Phone +44 29 2053 5523 | Fax +44 29 2036 3797 | Email <u>laura.curnow@opusinternational.co.uk</u> Unit 2 Fountain Court, Fountain Lane, St Mellons, Cardiff, CF3 oFB

Visit us online: <u>www.opusinternational.co.uk</u>

Opus International Consul	tants (UK) Ltd	Page 1
18D High Street		
Llandaff		
Cardiff CF5 2DZ		
Date 07/07/2014 10:04	Designed by cdlkj0	Dratharia
File	Checked by	
Micro Drainage	Source Control 2013.1.1	
	ICP SUDS Mean Annual Flood	1
	Input	
Return Per	riod (vears) 100 Soi	1 0.300
	Area (ha) 4.800 Urba	n 0.000
	SAAR (mm) 716 Region Numbe	r Region 9
	Results 1/S	
	QBAR Rural 9.0	
	QBAR Urban 9.0	
	0100 years 19 6	
	Q100 years 19.0	
	Q1 year 7.9	
	Q30 years 15.8	

Q100 years 19.6

From: Laura K. Curnow <Laura.Curnow@opusinternational.co.uk>
Sent: 11 July 2014 18:13
To: Jonathan Poynton <JonathanP@pontrilastimber.co.uk>; healdptnshp (healdptnshp@me.com) <healdptnshp@me.com>
Cc: Mark Lewis <Mark.Lewis@opusinternational.co.uk>
Subject: C8352 - Pontilas: Drainage Proposals
Importance: High

Hi both

Please find attached preliminary drainage proposals for your review and comment. I hope to issue the cut / fill volumetric analysis for the layout and levels shown on Monday.

I have developed the drainage solution mindful of phasing requirements which should give you flexibility to extend as per Kim's phasing layout. I have tried to minimise the encroachment of the ponds into potential development area. The entirety of the bottom, sawmills operation area (messy end) has been designed to be entirely open in the form of concrete open channels and ditches for ease of maintenance. The ditch is approximately 1m deep and it may be prudent to consider the inclusion of a safety barrier to the edges.

The principle of the design is that 0.5m depth of water would be typically retained as a baseline flow for the wetland biology. A small diameter pipe will be set to this level which allows water to flow through the ponds sequentially at a throttled rate. The water level in more extreme events will rise beyond this, to a maximum depth of up to 1.5m in total (1m effective storage depth with 0.5m baseline depth) at which point a larger overflow pipe will convey water through to the next pond. A complex flow control in the bottom pond ensures that water is released at a greenfield runoff rate into the wetland area. The small diameter pipe set at 0.5m depth means that each pond will drain without manual operation between storm events. The design achieves storage for a 1 in 100 year event of 6 hour duration with a 30% allowance for climate change.

With this design, manual drain down will now only be required to drain the baseline 0.5m depth. As the bottom ponds cannot be drained down by gravity (sited lower than existing ground) a portable pump would be needed to drain this pond when required. This is only envisaged for occasional maintenance or in the event of contamination or similar scenario when full emptying is needed. On the basis that a portable pump is required for the bottom ponds, I have omitted the multiple sluice penstock chambers serving each pond on the grounds that in the event of full drain down being required the same pump can be used instead. This will offer cost saving, health and safety benefits and a better operational solution as the ponds will drain themselves between storm events without manual input.

If you could let me know your initial thoughts and if happy I will forward on to Jay for his comment.

Could you also please confirm who is fulfilling the CDMC duties for our record? Jonathan, please note, if you do not appoint a third party the responsibilities lie with yourself as Client.

Kind regards, Laura

Laura Curnow CEng MICE | Senior Engineer | Opus International Consultants (UK) Ltd Phone +44 29 2053 5523 | Fax +44 29 2036 3797 | Email <u>laura.curnow@opusinternational.co.uk</u> Unit 2 Fountain Court, Fountain Lane, St Mellons, Cardiff, CF3 oFB

Visit us online: <u>www.opusinternational.co.uk</u>

Calculation Sheet

Project No:	V-C8352	Sheet No:	1 of	
Project:	Pontrilas Sawmills	Revision:	R0	-
	Extenstion of Sawmills	By:	LKC	
Element:	Drainage - SWS	Date:	08/07/2014	

Ref:	Calculati	on:					Outpu	ut:
Ref.	Calculati Prope Buildi requir mann netwo Martir see p Soaka deem devela It is th weste With n run-of the di descr With n all sur with n all sur with n Desig Site L Ratio, M5-60 Total Restri Assur Q100 Softw WinD Modu Carrie i) Fo	on: osed System De ng Regulations, res the means of er namely; disch ork. This approach h Jackson on be age 3-4) away testing was ed unviable to d opment. herefore propose rn boundary. reference to Win ff rate of 3.2l/s/h scharge to this r ibed below. reference to the fface water atter eference to the ff ocation: Pontrila R: 0.388 D: 19mm Contributing Rur icted Discharge ned 100% run-o +cc Flood Level vare, Procedure ES, MicroDraina les - Source Cor er System Criteri r a 1 in 2 year ref loore of the pipe ration to be itera	esign Criteri Document H surface wat harge to grou ch is inline w half of Herefo s undertaken rain the signi ed to discharg (DES output a (QBar) has ate for all sto same e-mail juation to be FRA is taken s (Southwess WinDES into the off Area: 4. Rate: QBar (ff from imper : 72.50m AC & Design C ge Softare F htrol & Networ a furn period - e network i.e. ted. Free Ou	ia I, as well a er disposa nd, watero ith initial c ordshire C by others ficant hard ge to the n (see page been detern been detern correspor sited abov as 72.50r t of Herefor egrated m 546ha (se @ 3.2l/s/ha meable ar D riteria Package: V ork (Syster system to no surcha tfall.*	as planning stratul to be consider course and finall onsultation advice ouncil 21 March and the obtained datanding area of the arge of the specifier ermined. It is pro- to simulated under the Q100 + con- apping facility e sketch within a = 14.551/s reas /ersion 2013.1.1 m 1 and Simulation operform with file arge / flooding. N	egy best practice, red in a sequential ly to piped sewerage ce received from a 2014 (correspondence ed infiltration rate of the proposed ook on the site's fic greenfield oposed to control er the scenarios a requirement for c flood level which calc pack) calc pack)		
	i) Fo	I bore of the pipe ration to be itera	e network i.e. ted. Free Ou	no surch Itfall.*	arge / flooding. \	Worst case storm		
	ii) Fo dra Stc	ain, below cover prm durations rep atfall.*	i.e. surcharg	e okay, no	o flooding. Short upstream carrie	t, high intensity r system. Free		
Calculation	Checked: Date:	PHIL	Revision	Checked: Date:		Revision Reason:		
į	Pale.	<u> (</u>	1	רימוס.		I		

Calculation Sheet

Letension of Bawmis Date Date Date Date Output Calculation Storage.Criteria iii) For a 1 in 30 year return period - flow to be contained within sealed carrier drain, bolicw cower i.e. surcharge okay, no flooding. Long duration storm events represent worst case for storage. Simulations to be run for storm durations until peak is reached and worst case is iterated. (v) For a 1 in 100 year return period - ensure long term storage provision for storm, duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall *Free outfall assumed in besits of ponds being outside of the flood zone with the outlet above the 100 year flood level. *The outfall assumed on besits of ponds being outside of the flood zone with the outlet above the 100 year flood level. *The outfall assumed in besits of ponds being outside of the flood zone with the outlet above the 100 year flood level. *The outfall assumed in besits of ponds being outside of the flood zone with the outlet above the 100 year flood level.	oject:	Pontrilas Sawmills	Revision: R0	
f. Calculation: Output: Storage Criteria (ii) For a 1 in 30 year return period – flow to be contained within sealed carrier drain, below cover i.e. surchange okay, no flooding. Long duration storm events, represent worst case for storage. Simulations to be run for storm durations ; until peak is reached and worst case is iterated. (iv) For a 1 in 100 year return period – ensure long term storage provision for storm, duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above (), (i) and (ii) simulated storm durations to be applied in increments of 15, 30, 60, 120 + 40 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.	ement:	Extension of Sawmills Drainage - SWS	By: LKC Date: 08/07/2014	- OPUS
# Calculation: Output Storage Criteria (ii) For a 1 in 30 year return period - flow to be contained within scaled carrier drain, below cover i.e. surcharge ókay, no flooding. Long duration storm events represent worst case for storage. Simulations to be run for storm durations until peak is reached and worst case is iterated. Iv) For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above (), (ii) and (iii) simulated storm durations to be applied in incremonts of 15, 30, 60, 120 +60 minutas until the peak is reached and worst case storm event is established for each design ortheria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.				
Storage Criteria Storage Criteria Storage Criteria Storage Criteria Storage Criteria Storage In 1 100 year return period - flow to be contained within sealed carrier drain, below cover i.e. surcharge okay, no flooding. Long duration storm events represent worst case for storage. Simulations to be run for storm durations until peak is reached and worst case is iterated. 9() For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows as an atlewance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall Above (h) and till simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.	ef:	Calculation:		Output:
Storage Criteria (iii) For a 1 in 30 year return period - flow to be contained within sealed carrier drain, below cover i.e. surcharge okay, no flooding. Long duration storm events represent worst case for storage. Simulations to be run for storm durations until peak is reached and worst case is iterated. (iv) For a 1 in 100 year return period - ensure long term storage provision for storm. duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall Above i), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 + 60 minutes until the peak is reached and worst case storm event is established for each design ortheria. "free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.				
 (iii) For a 1 in 30 year return period - flow to be contained within sealed carrier drain, below cover i.e. surcharge clay, no flooding. Long durations atoms wonts represent worst case for storage. Simulations to be run for storm durations in those is no allowance for claration of hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above i), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the pack is reached and worst case is torm event is established for each design orderia. "free outfall". "free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level. "free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level. 		Storage Criteria		
 Ideal, elsew order as bootrage. Simulations to be run for storm durations until peak is reached and worst case is iterated. (w) For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall as under the peak is reached and worst case storm event is established for each design oriteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level. 		(iii) For a 1 in 30 year return period - flow t	o be contained within sealed carrier	
until peak is reached and worst case is iterated. iv) For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall and the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		represent worst case for storage. Simil	lations to be run for storm durations	
 iv) For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows as an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above (), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the poak is reached and worst case storm event is established for each design criteria. "Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level. 		until peak is reached and worst case is	; iterated.	
IV) For a 1 in 100 year return period - ensure long term storage provision for storm duration of 6 hours. To include a 30% increase in flows are an allowance for climate change. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above I), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.				
climate charge. Any volume of flooding to be quantified and retained on-site. Free outfall*. Above (), (i) and (ii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		IV) For a 1 In 100 year return period - ensitive duration of 6 hours. To include a 30%	are long term storage provision for storm	
Free outfall*. Above i), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		climate change. Any volume of flooding	to be quantified and retained on-site.	
Above I), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design oriteria. *Tree outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		Free outfall*.		
Above I), ii) and iii) simulated storm durations to be applied in increments of 15, 30, 60, 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.				
60. vol. 120 +60 minutes until the peak is reached and worst case storm event is established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		Above i) ii) and iii) simulated sform durati	ons to be applied in increments of 15, 30	
established for each design criteria. *Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		60, 120 +60 minutes until the peak is re	ached and worst case storm event is	- 4 4
*Free outfall assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.		established for each design criteria.		
The outlet assumed on basis of ponds being outside of the flood zone with the outlet above the 100 year flood level.				
		 Tree outfall assumed on basis of ponds to outlet above the 100 year flood level. 	eing outside of the flood zone with the	
	l			
	ulat :			

Laura Curnow

From: Sent: To: Cc: Subject: healdptnshp <healdptnshp@me.com> 21 March 2014 15:22 Jonathan Poynton Laura K. Curnow Fwd: PONTRILAS SAWMILLS - proposed expansion

Afternoon Both

SEE below

Kim 01981 241144

Begin forwarded message:

From: "Jackson, Martin" <<u>Martin.Jackson@bblivingplaces.com</u>> Subject: RE: PONTRILAS SAWMILLS - proposed expansion Date: 21 March 2014 14:58:26 GMT To: healdptnshp <<u>healdptnshp@me.com</u>> Cc: "Klein, Debby" <dhklein@herefordshire.gov.uk>

Kim

I thank you for your patience on this matter. I am now able to comment as follows:

As per the EA's response, the development would require a Flood Risk Assessment (FRA) prepared in accordance with National Planning Policy Framework (NPPF) to support the planning application due to the size of the development being greater than 1 ha. The FRA should assess flood risk from all sources of flooding (i.e. fluvial, surface water, overland flow, groundwater and artificial sources), confirm the nature and extent of flood risk on land immediately adjacent to the site boundary, apply a site-specific sequential approach to the location of vulnerable development within the site, and discuss the proposed measures for managing surface water runoff to ensure no increased risk to the development and/or to people and property elsewhere.

The planning application should be supported by an outline drainage strategy that demonstrates how surface water and foul water from the proposed development will be managed. The surface water drainage strategy must demonstrate that there is no increased risk of flooding to the site or to people and property elsewhere as a result of development, up to and including the 1 in 100 year event and allowing for the potential effects of climate change.

Under Schedule 3 of the Flood Water Management Act 2010 (due to be enacted in late 2014) all new drainage systems for new and redeveloped sites must meet the new National Standards for Sustainable Drainage (currently in draft) and will require approval from the Lead Local Flood Authority (Herefordshire Council). In accordance with the draft National Standards for Sustainable Drainage and Policy DR4 of the Unitary Development Plan, the drainage strategy should incorporate the use of Sustainable Drainage Systems (SUDS) where possible. The surface water drainage strategy should be designed to mimic the existing drainage of the site. Infiltration measures are to be used unless it is demonstrated that infiltration is infeasible due to the underlying soil conditions or groundwater contamination risks. Where infiltration techniques are proposed, you should provide soil infiltration on groundwater levels as it is recommended that the invert level of a soakaway should be at least 1m above the groundwater level.

If drainage of the site cannot be achieved successfully through infiltration, surface water runoff should be managed via a controlled discharge to the adjacent watercourse. The rate and volume of discharge should be restricted to the pre-development Greenfield values. Reference should be made to Defra/EA document 'Preliminary Rainfall Runoff Management for Developments' (Revision E, January 2012) for guidance on calculating Greenfield runoff rates and volumes.

With regards to the proposed biodiversity area adjacent to the site, this area would not be appropriate for surface water attenuation as all attenuation should be located at an elevation above the 1 in 100 year plus climate change flood level. Raising of the land within the area identified to be at flood risk would also not be acceptable without providing compensatory flood storage elsewhere. However, the use of this area for biodiversity enhancement would be acceptable.

I trust this assists you.

Regards

Martin Jackson | Bridges, Structures and Flood Risk Manager

Balfour Beatty Living Places | Unit 3, Thorn Business Park | Rotherwas | Hereford | HR2 6JT

T :+44(0)1432 349529 | M : +44 (0) 7816 064146 | E: <u>Martin.Jackson@bblivingplaces.com</u>

www.balfourbeattyservices.com

Integrity | Teamwork | Excellence | Respect

Please consider the environment - do you really need to print this email

From: Jackson, Martin Sent: 20 March 2014 13:28 To: 'healdptnshp' Subject: RE: PONTRILAS SAWMILLS - proposed expansion

Kim

I am sorry for the delay with this reply but due to short term internal factors on workload I have a work backlog. I have detailed to colleague to consider your application and I hope to have a reply very soon.

Again I do apologise for the delay.

Regards

Martin Jackson | Bridges, Structures and Flood Risk Manager Balfour Beatty Living Places | Unit 3, Thorn Business Park | Rotherwas | Hereford | HR2 6JT

T :+44(0)1432 349529 | M : +44 (0) 7816 064146 | E: <u>Martin.Jackson@bblivingplaces.com</u>

www.balfourbeattyservices.com

Integrity | Teamwork | Excellence | Respect

Please consider the environment - do you really need to print this email

GREENFIELD RUNOFF RATE 5

Opus International Consu	Page 1	
18D High Street		
Llandaff		IV-Terror w
Cardiff CF5 2DZ		Therefore a
Date 08/07/2014 13:36	Designed by cdlkj0	DELETER
File	Checked by	
Micro Drainage	Source Control 2013.1.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 0.300 Soil Area (ha) 1.000 Urban 0.000 SAAR (mm) 1137 Region Number Region 9

Results 1/s

QBAR Rural 3.2 3 Pre-developed QBAR Urban 3.2 3 disclarge rate,

Q100 years 7.0

Q1 year 2.8 Q30 years 5.7 Q100 years 7.0

Opus International Consul	Page 1	
18D High Street	C8352	
Llandaff	Extension SWS	IV Para ~~~~
Cardiff CF5 2DZ	R0	
Date 08/07/14	Designed by LKC	DRETTRECE
File C8352-Sawmills E	Checked by	
Micro Drainage	Network 2013.1.1	

STORM SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length	Fall	Slope	I, Area	T.E.	Ba	ise	k	HYD	DIA
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)
1.000	46.840	0.200	234.2	0.206	5.00		0.0	0.600	0	300
1.001	8,700	0.039	223.1	0.000	0.00		0.0	0.600	о	100
2.000	39.800	0.180	221.1	0.416	5.00		0.0	0.600	0	300
1.002	7.500	0.033	227.3	0.000	0.00		0.0	0,600	0	100
3.000	39.121	0.180	217.3	0,362	5.00		0.0	0.600	0	300
4.000	68,600	0.700	98.0	0.093	5.00		0.0	0.600	o	225
4.001	55.700	0.895	62.2	0.069	0.00		0.0	0.600	0	225
5.000	26.100	0.120	217.5	0.279	5.00		0.0	0.600	o	300
4.002	18,800	0.080	235.0	0.032	0.00		0.0	0.600	0	450
4.003	46,060	0.200	230.3	0.288	0.00		0.0	0.600	o	450
4.004	13.200	0.100	132.0	0.029	0.00		0.0	0,600	0	450
6.000	31.900	0.700	45.6	0.052	5,00		0.0	0.600	0	150
4.005	74.500	0.300	248.3	0.103	0.00		0.0	0.600	0	450

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1.000	0.00	5.76	76.500	0.206	0.0	0.0	0.0	1.02	72.3	0.0
1,001	0.00	6.05	76.200	0.206	0.0	0.0	0.0	0.51	4.0	0,0
2.000	0.00	5.63	75.300	0,416	0.0	0.0	0.0	1.05	74.5	0.0
1.002	0.00	6.29	74.940	0.622	0.0	0.0	0.0	0.51	4.0	0.0
3.000	0.00	5.61	74.780	0.362	0.0	0.0	0.0	1.06	75.1	0.0
4.000	0.00	5.87	77.200	0.093	0.0	0.0	0.0	1.32	52.5	0.0
4.001	0.00	6.42	76.500	0.162	0.0	0.0	0.0	1.66	66.0	0.0
5.000	0.00	5.41	75.650	0.279	0.0	0.0	0.0	1.06	75.1	0.0
4,002	0.00	6.66	75.380	0.473	0.0	0.0	0.0	1.32	210.2	0.0
4.003	0.00	7,24	75.300	0.761	0.0	0.0	0.0	1.34	212.4	0.0
4.004	0.00	7.36	75.100	0.790	0.0	0.0	0.0	1.77	281,2	0.0
6.000	0.00	5.36	77,200	0.052	0.0	0.0	0.0	1,49	26.4	0.0
4.005	0.00	8.33	75.000	0.945	0.0	0.0	0.0	1.29	204.5	0.0
			©198	32-2013	Micro Drai	nage	Ltd			

Course International Cons	witconto (IIK) It	d	Page 2		
10D High Street			ruge z		
18D High Street	COSSZ Detender CW	C		- 4	
	Excension Sw.	5		r(0)	
Cardiff CF5 2DZ	RU		Dee		
Date 08/07/14	Designed by	TKC	LUC	<u>IGC G</u>	
File C8352-Sawmills E.	. Checked by				
Micro Drainage	Network 2013	,1,1			
CTODM SEWE	P DESIGN by the	Modified Rat	ional Metho	-1	
STORE SEWE	IN DEDICIN Dy che	. Hourried ha	fondr noono	-	
	Network Design	Table for Sto	orm		
PN Length Fa	11 Slope I.Area	T.E. Base (mins) Flow (1	k HYD /s) (mm) SECT	DIA (mm)	
(11)	(i) (i.x) (iid)	(11110) 1201 (2	, , , , , , , , , , , , , , , , , , , ,	V <i>i</i>	
4.006 65.800 0.3	300 219.3 0.000	0.00	0.0 0.600 o	450	
4.007 19.300 0.0	J90 214.4 0.000	0.00	0.0 0.000 0	450	
1.003 10.000 0.0	050 200.0 0.000	0.00	0.0 0.600 0	100	
1.004 10.000 0.0	050 200.0 0.000	0.00	0.0 0.600 0	100	
1.005 10.000 0.0	001 10000.0 0.000	0.00	0.0 0.600	100	
7.000 32.450 0.0	065 500.0 0.607	5.00	0.0 0.600 📈	-6 7	
7.001 39.260 0.0	079 497.0 0.690	0.00	0.0 0.600 🚺	-6 mm	1
7.002 39.350 0.0	079 500.0 0.075	0.00	0.0 0.600 \/	-6 1 1/10	1 a duit
7.003 46.320 0.0	093 500.0 0.610	0.00	0.0 0.600	-6 - Kefe	r to conduit
7.004 46.150 0.0	092 500.0 0.410	0.00	0.0 0.600	-° Fili	overlap
7.005 15.500 0	243 63.8 0.225	0.00	0.0 0.800 1	0 0	'
1.006 10.000 0.0	001 10000.0 0.000	0.00	0.0 0.600 0	150	
1.007 10.000 0.0	001 10000.0 0.000	0.00	0.0 0.600 0	225	
1.008 10.000 0.1	001 10000.0 0.000	0.00	0.0 0.600 c	225	
	Network Rea	sults Table			
			dd mlass Wal	Can Elow	
PN Rain T.C. (JS/IL と I.Area と (m) (ha) Flo	Base Foul F w (1/s) (1/s)	(1/s) (m/s)	(1/s) (1/s)	
(hut/htt) (httnb)	(
4.006 0.00 9.13 7	4.700 0.945	0.0 0.0	0.0 1.37	217.7 0.0	
4.007 0.00 9.36 /	4.400 0.945	0.0 0.0	0.0 1.38	220.2 0.0	
1.003 0.00 9.67 7	4.310 1.929	0.0 0.0	0.0 0.54	4.2 0.0	
1.004 0.00 9.98 7	3.500 1.929	0.0 0.0	0.0 0.54	4.2 0.0	
1.005 0.00 12.39 7	3.000 1.929	0.0 0.0	0.0 0.07	0.5 0.0	
7.000 0.00 5.34 7	3.400 0.607	0.0 0.0	0.0 1.57	1178.2 0.0	
7.001 0.00 5.76 7	3.335 1.297	0.0 0.0	0.0 1.58	1181.9 0.0	
7.002 0.00 6.18 7	3.256 1.372	0.0 0.0	0.0 1.57	1178.2 0.0	
7.003 0.00 6.67 7	3.177 1.982	0.0 0.0	0.0 1.57	1178.2 0.0	
	3.085 2.392		0.0 1.57 0.0 4.42	3316.5 0.0	
1.005 0.00 1.22 /	2.552 2.017	0.0 0.0	0.00 0.00		
1.006 0.00 14.20 7	2.749 4.546	0.0 0.0	0.0 0.09	1.6 0.0	
1.007 0.00 15.56 7	2.501 4.546	0.0 0.0	0.0 0.12	4.8 0.0	
1.008 0.00 16.93 7	2.500 4.546	0.0 0.0	0.0 0,12	4.8 0.0	
Fre	e Flowing Outfal	<mark>ll </mark> Details fo	r Storm		
	0.46-11 0 1	T Torral M			
Outfall Dine Number	OUTIALL C. Level	(m) I I.	evel (mm) (mm)		
LTDe MUNDE		(II) (I	n)		
	10 74 000	0 72 /00 72	400 300 0		
1.00	74.000	J 12.433 12	.100 000 0]

3.2: 1/s/ka = 14.64/s Greenfield Restricted Disulage Rate Q

Opus International Consul	Page 1	
18D High Street		
Llandaff		IV Popp ~ ~
Cardiff CF5 2DZ		
Date 10/07/2014 16:24	Designed by cdlkj0	D PENDECE
File C8352-Sawmills E	Checked by	
Micro Drainage	Network 2013.1.1	

Conduits

Section		Input	Depth (%)	Wetted	Wetted	Base	Coordinates	Cover (Coordinates
				Area (m²)	Perimeter (m)	X (m)	Y (m)	X (m)	Y (m)
		4.12	1927		10.000		1 000		
1	Symbol	//	10	1.500	15.200	0.000	1.000		
	Width (mm)	15000	30	4.500	15.600	0.000	0.000		
	Height (mm)	1000	50	7.500	16.000	15.000	0.000		
	C.Height (mm)	300	70	10.500	16.400	15.000	1.000		
	Side Angle (°)	90.0	90	13.500	16.800				
	Splay (mm)	0	100	15.000	17.000				
1	Open Section	Yes	10	0.000	00.000	0 000	1 000	0 000	1 000
2	Symbol	[]	10	2.000	20.200	0.000	1.000	20.000	1.000
	Width (mm)	20000	30	6.000	20.600	10.001	0.000	20.000	1.000
	Height (mm)	1000	50	10.000	21.000	19.999	1.000		
	C.Height (mm)	450	70	14.000	21.400	20.000	1.000		
	Side Angle (°)	90.0	90	18.000	21.800				
	Splay (mm)	0	100	20.000	42.000				
	Open Section	No	10	0.000	0 600	0 000	0 (00		
3	Symbol	~//	10	0.030	0.620	0.000	0.600		
	Width (mm)	500	30	0.090	0.860	0.000	0.000		
	Height (mm)	600	50	0.150	1.100	0.500	0.000		
	C.Height (mm)	600	70	0.210	1.340	0.500	0.600		
	Side Angle (°)	90.0	90	0.270	1.580				
	Splay (mm)	0	100	0.300	1.700				
	Open Section	Yes	3725		0 700	0 000	1 000		
4	Symbol	1/	10	0.050	0.700	0.000	1.000		
	Width (mm)	500	30	0.150	1.100	0.000	0.000		
	Height (mm)	1000	50	0.250	1.500	0.500	0.000		14
	C.Height (mm)	1000	70	0.350	1.900	0.500	1.000		
	Side Angle (°)	90.0	90	0.450	2.300				
	Splay (mm)	0	100	0.500	2.500				
	Open Section	Yes			1 000	0 000	1 000		
5	Symbol	\/	10	0.100	1.200	0.000	1.000		
	Width (mm)	1000	30	0.300	1.600	0.000	0.000		
	Height (mm)	1000	50	0.500	2.000	1.000	0.000		
	C.Height (mm)	1000	70	0.700	2.400	1.000	1.000		
	Side Angle (°)	90.0	90	0.900	2.800				
	Splay (mm)	0	100	1.000	3.000			200	12 13
(internet)	Open Section	Yes		0 075	0.050	0 000	1 000	121	Cor
6	Symbol	V	10	0.075	0.950	0.000	1.000	(C.	111
	Width (mm)	750	30	0.225	1.350	0.000	0.000	1 su	reteg
	Height (mm)	1000	50	0.375	1.750	0.750	0.000	G	marit
	C.Height (mm)	1000	70	0.525	2.150	0.750	1.000	-	011
	Side Angle (°)	90.0	90	0.675	2.550				rople
	Splay (mm)	0	100	0.750	2.750			\checkmark	
	Open Section	Yes							
1									

Opus International Consul	Page 4	
18D High Street	C8352	
Llandarr	Excension SWS	IL MERO M
Cardiff CF5 2DZ	RO	
Date 08/07/14	Designed by LKC	DELECE
File C8352-Sawmills E	Checked by	
Micro Drainage	Network 2013.1.1	

Online Controls for Storm

Depth/Flow Relationship Manhole: 24, DS/PN: 1.007, Volume (m³): 1.3

Invert Level (m) 72.501

Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (l/s)	Depth (m)	Flow (1/s)
0.02	0.3110	0.286	14.3760	0.551	13.7700	0.816	13.1400
0.04	1.1940	0.306	14.4010	0.571	13.6570	0.837	13.2940
0.06	2.5600	0.327	14.4040	0.592	13.5230	0.857	13.4460
0.083	4.3070	0.347	14.3880	0.612	13.3590	0.878	13.5970
0.10	6.3150	0.367	14.3580	0.633	13.1590	0.898	13.7450
0.123	8.4340	0.388	14.3170	0.653	12.9160	0.918	13.8920
0.143	10.4930	0.408	14.2680	0.673	12.6210	0.939	14.0370
0.163	12.2520	0.429	14.2130	0.694	12.2650	0.959	14.1800
0.18	13.7070	0.449	14.1540	0.714	12.3390	0.980	14.3220
0.20	13.9370	0.469	14.0910	0.735	12.5040	1.000	14.4620
0.22	1 14.1110	0.490	14.0230	0.755	12.6660	1.100	15.1300
0.24	14.2370	0.510	13.9480	0.776	12.8260	1.200	15.7670
0.26	14.3230	0.531	13.8650	0.796	12.9840		

SEE HYDROBRAUE DATA SHEETS OVERIGAF PRODUCT REF SHE -0172 - 1455 - 1000 - 1455 .

Technical Specification					
Control Point	Head (m)	Flow (I/s)			
Primary Design	1.000	14.462			
Flush-Flo™	0.318	14.405			
Kick-Flo®	0.696	12.193			
Mean Flow		12.268			

			0.000	0.000
			0.034	0.864
			0.069	3.184
			0.103	6.459
			0.138	10.023
			0.172	12.964
			0.207	13.964
			0.241	14.218
	1		0.276	14.355
			0.310	14.403
			0.345	14.390
			0.379	14.335
			0.414	14.253
Ê			0.448	14.156
ı) p			0.483	14.047
lea	0.5		0.517	13.921
<u> </u>			0.552	13.766
			0.586	13.562
			0.621	13.281
			0.655	12.888
			0.690	12.344
			0.724	12.419
	0		0.759	12.694
		0 5 10 15	0.793	12.963
		5 10 15	0.828	13.226
			0.862	13.483
		FIOW (I/S)	0.897	13.735
			0.931	13.982
			0.966	14.224
			1.000	14.462
DESIGN ADVICE	The h Hydro evalua	ead/flow characteristics of this SHE-0172-1455-1000-1455 -Brake Optimum® Flow Control are unique. Dynamic hydraulic modelling ates the full head/flow characteristic curve. Is a of any other flow control will invalidate any design based on this data	Hyc	
ļ	and c	ould constitute a flood risk.	merna	
DATE		10/07/2014 15:04:35		455-1000-1450
SITE		Jauracurpow		
DLUIUI	VLIV		Ludro Dro	La Ontimum®

Head (m)	Flow (I/s)
0.000	0.000
0.034	0.864
0.069	3.184
0.103	6.459
0.138	10.023
0.172	12.964
0.207	13.964
0.241	14.218
0.276	14.355
0.310	14.403
0.345	14.390
0.379	14.335
0.414	14.253
0.448	14.156
0.483	14.047
0.517	13.921
0.552	13.766
0.586	13.562
0.621	13.281
0.655	12.888
0.690	12.344
0.724	12.419
0.759	12.694
0.793	12.963
0.828	13.226
0.862	13.483
0.897	13.735
0.931	13.982
0.966	14.224
1.000	14.462

Hydro-Brake Optimum®

 REF
 Nyuro-Drake Optimums

 © 2014
 Hydro International, Shearwater House, Clevedon Hall Estate, Victoria Road, Clevedon, BS21 7RD. Tel 01275 878371
 Fax 01275 874979
 Web www.hydro-int.com
 Email enquiries@hydro-int.com

Opus International Consu	ltants (UK) Ltd	Page 5	
18D High Street	C8352		
Llandaff	Extension SWS	March	1 m
Cardiff CF5 2DZ	RO		R
Date 08/07/14	Designed by LKC	Preme	EC Go
File C8352-Sawmills E	Checked by		
Micro Drainage	Network 2013.1.1		
	Offline Controls for Stor	<u>rm</u>	
Pipe Manho	le: 2, DS/PN: 1.001, Loop	to PN: 1.002	Overflow Pond 1 -> 2
Diameter (m) Section Type Slope (1:X) Length (m)	0.100 Roughne Pipe/Conduit Entry Loss Co 100.0 Coefficient of Co 5.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 77.200	
Pipe Manho	le: 4, DS/PN: 1.002, Loop	to PN: 1.003	
Diameter (m) Section Type Slope (1:X) Length (m)	0.100 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 10.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 75.940	Pond 2 -> 3
Pipe Manho	le: 16, DS/PN: 1.003, Loop	to PN: 1.004	
Diameter (m) Section Type Slope (1:X) Length (m)	0.225 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 10.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 75.310	Pond 3-74
Pipe Manho	le: 21, DS/PN: 1.004, Loop	to PN: 1.005	
Diameter (m) Section Type Slope (l:X) Length (m)	0.100 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 100.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 74.500	Bond 4 -> 5
Pipe Manho.	le: 18, DS/PN: 1.005, Loop	to PN: 1.006	
Diameter (m) Section Type Slope (1:X) Length (m)	0.150 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 1.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 74.000	Pond 5->6
Pipe Manho	le: 23, DS/PN: 1.006, Loop	to PN: 1.007	
Diameter (m) Section Type Slope (1:X) Length (m)	0.150 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 10.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 73.750	Bond 6->7
Pipe Manho	ble: 24, DS/PN: 1.007, Loop	o to PN: None	
Diameter (m) Section Type Slope (1:X) Length (m)	0.225 Roughne Pipe/Conduit Entry Loss Co 225.0 Coefficient of Co 5.000 Upstream Invert	ss k (mm) 0.600 efficient 0.500 ntraction 0.600 Level (m) 73.650	Dunny overflow to asses sufficient storage capacity.
(©1982-2013 Micro Drainage	Ltd	
Au overflows &	Row escapes the syst	ponds are los	ped
a contraction of the second se			

Opus Internati	onal Consu	ltants (UK) Lt	d	8	1	Page	5		
18D High Stree	t	C8352	,				-			
I landaff	-	Evtone	ion SMG	3		1		70 ~~~~	~~~~	
Liandali	7	DALEIIS	TOU DWC)			1 NA	RCH	\bigcirc	m
Cardiff CF5 2D	Δ	KU .		RO				made	DACT	R
Date 08/07/14		Design	ed by I	LKC			2	LC.	<u>ICF</u>	Зģ
File C8352-Saw	mills E	Checke	d by							20
Micro Drainage		Networ	k 2013.	.1.1						
		C 1	Q1			0+ o 20				
		Storage	Struct	ures I	or a	stori	<u>n</u>			
	0									
Pmd	(1) Tank	or Pond	Manhol	.e: 2,	DS/	'PN:	1.00	1		
1 or car						23				
		Inve	rt Level	. (m) 7	6.200	D				
Depth (m) An	rea (m²) Dep	th (m) Ar	ea (m²)	Depth	(m) 1	Area	(m²)	Depth (m)	Area (m²)	
0.000	144.0	0.300	208.3	0.	600	2	84.2	0.900	371.5	
0.100	164.2	0.400	232.3	0.	700	3	12.0	1.000	403.2	
0.200	185.6	0.500	257.6	0.	800	3	41.1			
0 , 1	Tonle	or Dond	Manhol	Q · 1	/ פת	'PN·	1 00	12		
Kond (2	J Tank	or Pond	rianno.	LC, 4/	ופת	T TA •	1.00			
		Inve	rt Level	. (m) 7	4.940	0				
Depth (m) Au	rea (m²) Dep	oth (m) Ar	ea (m²)	Depth	(m) 2	Area	(m²)	Depth (m)	Area (m²)	
	005 0	0 400	A10 A	0	800	5	72 1	1 200	746 8	
0.000	285.0	0.400	418.4	0.	900	6	14.0	1.300	793.6	
0.200	349.2	0.600	492.8	1.	000	6	57.0	1.400	841.6	
0.300	383.2	0.700	532.0	1.	100	7	01.2			
						1	1 0	~~		
Bond 1	3) <u>Tank</u>	or Pond	Manhol	e: 16,	, DS,	/PN:	1.0	03		
i bi de C		Inve	rt Level	L (m) 7	4.310	0				
Depth (m) A	rea (m²) Der	oth (m) Ar	ea (m²)	Depth	(m) .	Area	(m²)	Depth (m)	Area (m²)	
Depen (m) H	.eu ()		, ,							
0.000	119.0	0.400	199.3	0.	800	3	00.1	1.200	421.4	
0.100	137.2	0.500	222.6	0.	900	2	28.5	1.300	454.9	
0.200	177.3	0.000	247.2	1.	100	3	89.2	1.400	405.7	
0.300	<u></u>	01/00						l:		
Pond (4	P) Tank	or Pond	Manhol	e: 21	, DS	/PN:	1.0	04		
Invert Level (m) 73.500										
Depth (m) A	rea (m²) Dep	oth (m) Ar	ea (m²)	Depth	(m)	Area	(m²)	Depth (m)	Area (m²)	
	207.0	0 600	510 C	3	200	7	70 3	1.800	1076 0	
0.000	329 1.0	0.000	550 7	1	300	8	18.0	1,900	1131.5	
0.100	363 1	0.800	592 0	1	400	8	67.1	2.000	1188.2	
0.300	398.0	0.900	634.7	1.	500	9	17.4			
0.400	434.3	1.000	678.6	1.	600	9	69.0			
0.500	471.8	1.100	723.8	1.	700	10	21.9			
	Tank	or Pond	Manhol	.e: 18	, DS	/PN:	1.0	05		
		·Inve	ert Leve	1 (m) 5	13.00	0-				
		©1982-20	13 Mic:	ro Dra	inag	ge Lt	:d			

Opus International Con	sultants	(UK) Ltd		Page 6				
18D High Street	C8352			· · · · · · · · · · · · · · · · · · ·				
Llandaff	Extens	ion SWS		∇	lan	Jun II		
Cardiff CF5 2DZ	R0	RO						
Date 08/07/14	Design	ed by LK	C) D)_	Panto	RODA		
File C8352-Sawmills E.	Checke	d by						
Micro Drainage	Networ	k 2013.1	1					
Port (5) Tan	k or Pond	Manhole	: 18, DS/	PN: 1.005				
Depth (m) Area (m ²)	epth (m) Ar	cea (m²) D	epth (m) A	rea (m²) De	epth (m) A	rea (m²)		
0.000 109.0	0.400	186.1	0.800	283.7	1.200	401.8		
0.100 126.4	0.500	208.6	0.900	311.3	1.300	434.5		
0.200 145.0	0.600	232.4	1.000	340.2	1.400	468.5		
0.300 164.9	0.700	257.4	1,100	370.4	1.500	505.8		
Pond (Tan	k or Pond	Manhole	: 23, DS/	PN: 1.006				
_	Inve	ert Level	(m) 72.750					
Depth (m) Area (m ²)	epth (m) Ar	cea (m²) D	epth (m) A	rea (m²) De	epth (m) A	rea (m²)		
0.000 323.0	0.400	468.6	0.800	634.7	1.200	821.2		
0.100 357.5	0.500	508.2	0.900	679.4	1.300	871.1		
0.200 393.2	0.600	549.1	1.000	725.4	1.400	922.2		
0.300 430.3	0.700	JJ1.2	1,100	112.1	1.500	37110		
Pond 7) Ian	k or Pond	Manhole	: 24, DS/	PN: 1.007	-			
	Inve	ert Level	(m) 72.501					
Depth (m) Area (m ²)	Depth (m) Ar	cea (m²) D	epth (m) A	rea (m²) De	epth (m) A	rea (m²)		
0.000 629.6	0.600	920.5	1.200	1257.4	1.800	1640.5		
0.100 674.9	0.700	973.4	1.300	1318.1	1.900	1708.8		
0.200 /21.4	0.800	1027.7	1.400	1443.2	2.000	1770.4		
0.400 818.4	1.000	1140.0	1.600	1507.7				
0.500 868.8	1.100	1198.1	1.700	1573.4				
©1982-2013 Micro Drainage Ltd								

Depth water above base	Depth of water above outlet	L (m)	W (m)	Area (m²)
0.0	-0.5	10.4	6.0	62.4
0.1	-0.4	11.2	6.8	76.2
0.2	-0.3	12.0	7.6	91.2
0.3	-0.2	12.8	8.4	107.5
0.4	-0.1	13.6	9.2	125.1
0.5	0	14.4	10.0	144.0
0.6	0.1	15.2	10.8	164.2
0.7	0.2	16.0	11.6	185.6
0.8	0.3	16.8	12.4	208.3
0.9	0.4	17.6	13.2	232.3
1.0	0.5	18.4	14.0	257.6
1.1	0.6	19.2	14.8	284.2
1.2	0.7	20.0	15.6	312.0
1.3	0.8	20.8	16.4	341.1
1.4	0.9	21.6	17.2	371.5
1.5	1	22.4	18.0	403.2
1.6	1.1	23.2	18.8	436.2
1.7	1.2	24.0	19.6	470.4
1.8	1.3	24.8	20.4	505.9
1.9	1.4	25.6	21.2	542.7
2.0	1.5	26.4	22.0	580.8
2.1	1.6	27.2	22.8	620.2
2.2	1.7	28.0	23.6	660.8
2.3	1.8	28.8	24.4	702.7
2.4	1.9	29.6	25.2	745.9
2.5	2	30.4	26.0	790.4

Ро	n	d	2

Depth water	Depth of water	L (m)	W (m)	Area (m ²)
above base	above outlet	DAF	6.0	147.0
0.0	-0.5	24.5	6.0	147.0
0.1	-0.4	25.3	6.8	172.0
0.2	-0.3	26.1	7.6	198.4
0.3	-0.2	26.9	8.4	226.0
0.4	-0.1	27.7	9.2	254.8
0.5	0	28.5	10.0	285.0
0.6	0.1	29.3	10.8	316.4
0.7	0.2	30.1	11.6	349.2
0.8	0.3	30.9	12.4	383.2
0.9	0.4	31.7	13.2	418.4
1.0	0.5	32.5	14.0	455.0
1.1	0.6	33.3	14.8	492.8
1.2	0.7	34.1	15.6	532.0
1.3	0.8	34.9	16.4	572.4
1.4	0.9	35.7	17.2	614.0
1.5	1	36.5	18.0	657.0
1.6	1.1	37.3	18.8	701.2
1.7	1.2	38.1	19.6	746.8
1.8	1.3	38.9	20.4	793.6
1.9	1.4	39.7	21.2	841.6
2.0	1.5	40.5	22.0	891.0
2.1	1.6	41.3	22.8	941.6
2.2	1.7	42.1	23.6	993.6
2.3	1.8	42.9	24.4	1046.8
2.4	1.9	43.7	25.2	1101.2
2.5	2	44.5	26.0	1157.0

Depth water	Depth of water	L (m)	W (m)	Area (m ²)
apove base		7.0	6.0	A7 A
0.0	-0.5	7.9	0.0	47.4 E0.2
0.1	-0.4	8./	<u>ь.</u> х	59.2
0.2	-0.3	9.5	7.6	/2.2
0.3	-0.2	10.3	8.4	86.5
0.4	-0.1	11.1	9.2	102.1
0.5	0	11.9	10.0	119.0
0.6	0.1	12.7	10.8	137.2
0.7	0.2	13.5	11.6	156.6
0.8	0.3	14.3	12.4	177.3
0.9	0.4	15.1	13.2	199.3
1.0	0.5	15.9	14.0	222.6
1.1	0.6	16.7	14.8	247.2
1.2	0.7	17.5	15.6	273.0
1.3	0.8	18.3	16.4	300.1
1.4	0.9	19.1	17.2	328.5
1.5	1	19.9	18.0	358.2
1.6	1.1	20.7	18.8	389.2
1.7	1.2	21.5	19.6	421.4
1.8	1.3	22.3	20.4	454.9
1.9	1.4	23.1	21.2	489.7
2.0	1.5	23.9	22.0	525.8
2.1	1.6	24.7	22.8	563.2
2.2	1.7	25.5	23.6	601.8
2.3	1.8	26.3	24.4	641.7
2.4	1.9	27.1	25.2	682.9
2.5	2	27.9	26.0	725.4

<u>Pond 4</u>

Depth water	Depth of water	L (m)	W (m)	Area (m ²)
above base	above outlet			
0.0	-0.5	25.7	6.0	154.2
0.1	-0.4	26.5	6.8	180.2
0.2	-0.3	27.3	7.6	207.5
0.3	-0.2	28.1	8.4	236.0
0.4	-0.1	28.9	9.2	265.9
0.5	0	29.7	10.0	297.0
0.6	0.1	30.5	10.8	329.4
0.7	0.2	31.3	11.6	363.1
0.8	0.3	32.1	12.4	398.0
0.9	0.4	32.9	13.2	434.3
1.0	0.5	33.7	14.0	471.8
1.1	0.6	34.5	14.8	510.6
1.2	0.7	35.3	15.6	550.7
1.3	0.8	36.1	16.4	592.0
1.4	0.9	36.9	17.2	634.7
1.5	1	37.7	18.0	678.6
1.6	1.1	38.5	18.8	723.8
1.7	1.2	39.3	19.6	770.3
1.8	1.3	40.1	20.4	818.0
1.9	1.4	40.9	21.2	867.1
2.0	1.5	41.7	22.0	917.4
2.1	1.6	42.5	22.8	969.0
2.2	1.7	43.3	23.6	1021.9
2.3	1.8	44.1	24.4	1076.0
2.4	1.9	44.9	25.2	1131.5
2.5	2	45.7	26.0	1188.2

Depth water above base	Depth of water above outlet	L (m)	W (m)	Area (m ²)
0.0	-0.5	6.9	6.0	41.4
0.1	-0.4	7.7	6.8	52.4
0.2	-0.3	8.5	7.6	64.6
0.3	-0.2	9.3	8.4	78.1
0.4	-0.1	10.1	9.2	92.9
0.5	0	10.9	10.0	109.0
0.6	0.1	11.7	10.8	126.4
0.7	0.2	12.5	11.6	145.0
0.8	0.3	13.3	12.4	164.9
0.9	0.4	14.1	13.2	186.1
1.0	0.5	14.9	14.0	208.6
1.1	0.6	15.7	14.8	232.4
1.2	0.7	16.5	15.6	257.4
1.3	0.8	17.3	16.4	283.7
1.4	0.9	18.1	17.2	311.3
1.5	1	18.9	18.0	340.2
1.6	1.1	19.7	18.8	370.4
1.7	1.2	20.5	19.6	401.8
1.8	1.3	21.3	20.4	434.5
1.9	1.4	22.1	21.2	468.5
2.0	1.5	22.9	22.0	503.8
2.1	1.6	23.7	22.8	540.4
2.2	1.7	24.5	23.6	578.2
2.3	1.8	25.3	24.4	617.3
2.4	1.9	26.1	25.2	657.7
2.5	2	26.9	26.0	699.4

Depth water	Depth of water	L (m)	W (m)	Area (m ²)
above base				160.0
0.0	-0.5	28.3	6.0	169.8
0.1	-0.4	29.1	6.8	197.9
0.2	-0.3	29.9	7.6	227.2
0.3	-0.2	30.7	8.4	257.9
0.4	-0.1	31.5	9.2	289.8
0.5	0	32.3	10.0	323.0
0.6	0.1	33.1	10.8	357.5
0.7	0.2	33.9	11.6	393.2
0.8	0.3	34.7	12.4	430.3
0.9	0.4	35.5	13.2	468.6
1.0	0.5	36.3	14.0	508.2
1.1	0.6	37.1	14.8	549.1
1.2	0.7	37.9	15.6	591.2
1.3	0.8	38.7	16.4	634.7
1.4	0.9	39.5	17.2	679.4
1.5	1	40.3	18.0	725.4
1.6	1.1	41.1	18.8	772.7
1.7	1.2	41.9	19.6	821.2
1.8	1.3	42.7	20.4	871.1
1.9	1.4	43.5	21.2	922.2
2.0	1.5	44.3	22.0	974.6
2.1	1.6	45.1	22.8	1028.3
2.2	1.7	45.9	23.6	1083.2
2.3	1.8	46.7	24.4	1139.5
2.4	1.9	47.5	25.2	1197.0
2.5	2	48.3	26.0	1255.8

.

Depth water	Depth of water above outlet	L (m)	W (m)	Area (m²)
0.0	-0.5	36.1	11.7	422.4
0.1	-0.4	36.9	12.5	461.3
0.2	-0.3	37.7	13.3	501.4
0.3	-0.2	38.5	14.1	542.9
0.4	-0.1	39.3	14.9	585.6
0.5	0	40.1	15.7	629.6
0.6	0.1	40.9	16.5	674.9
0.7	0.2	41.7	17.3	721.4
0.8	0.3	42.5	18.1	769.3
0.9	0.4	43.3	18.9	818.4
1.0	0.5	44.1	19.7	868.8
1.1	0.6	44.9	20.5	920.5
1.2	0.7	45.7	21.3	973.4
1.3	0.8	46.5	22.1	1027.7
1.4	0.9	47.3	22.9	1083.2
1.5	1	48.1	23.7	1140.0
1.6	1.1	48.9	24.5	1198.1
1.7	1.2	49.7	25.3	1257.4
1.8	1.3	50.5	26.1	1318.1
1.9	1.4	51.3	26.9	1380.0
2.0	1.5	52.1	27.7	1443.2
2.1	1.6	52.9	28.5	1507.7
2.2	1.7	53.7	29.3	1573.4
2.3	1.8	54.5	30.1	1640.5
2.4	1.9	55.3	30.9	1708.8
2.5	2	56.1	31.7	1778.4

POND LONGSECTION NTS

		1 in 2 Year Wor 15 MIN WINTER J Car	t Case Upstream
Opus International Consul	tants (UK) Ltd	Page 1	
18D High Street	C8352		
Llandaff	Extension SWS	Micro ~	7 m
Cardiff CF5 2DZ	R0		R
Date 08/07/14	Designed by LKC	DELE	Go
File C8352-Sawmills E	Checked by		
Micro Drainage	Network 2013.1.1		
Si	mulation Criteria for St	orm	
Volumetric Runof Areal Reduction Hot Start Hot Start Lev Manhole Headloss Coeff Number of Input Number of Onl Number of Offl	Ef Coeff 0.840 Foul Sewage n Factor 1.000 Additional Flor (mins) 0 vel (mm) 0 (Global) 0.500 Hydrographs 0 Number of Stor ine Controls 1 Number of Time ine Controls 7	e per hectare (1/s) 0.000 w - % of Total Flow 0.000 r * 10m³/ha Storage 2.000 Run Time (mins) 60 put Interval (mins) 1 rage Structures 7 e/Area Diagrams 0	
	Synthetic Rainfall Detail	_8	
Rainfall Mod Return Period (year Regi M5-60 (m Ratio	el FSR s) 2 on England and Wales m) 19.000 Storm Du R 0.388	Profile Type Winter Cv (Summer) 0.750 Cv (Winter) 0.840 mration (mins) 15	

100 Utah Ctar	ot	CONSUL	C8352							
ISD HIGN STRE	ec		LOSSZ	n cuic				Y		
Llandaff			Extensio	on SWS			I GRO			
Cardiff CF5 2	2DZ		RO				5		\sim	
Date 08/07/14	L.	Designed by LKC								
File C8352-Sa	wmill	s E	Checked	bу						
Micro Drainag	je		Network	2013.1.	1					
Su	mmary	of Res	sults for	15 min	ute 2	year Win	ter (Storm)		
Mar	gin fo	r Flood	Risk Warnin	ıg (mm)				300.0		
			Analysis Ti	mestep 2	2.5 Seco	nd Increm	ent (E	off		
				Status				ON		
			Inertia	Status				ON		
		Water	Surcharged	Flooded	uerren V.et		Pipe			
	US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	Charles a		
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/5)	Status		
1.000	1	76,653	-0.147	0.000	0.51	0.0	34.8	OK		
1.001	2	76.292	-0.008	0.000	1.00	0.0	3.7	OK		
2.000	2	75.545	-0.055	0.000	1.00	0.0	69.1	OK		
🃌 1.002	4	75.047	0.007	0.000	1.17	0.0	4.2	SURCHARGED		
3.000	5	74.999	-0.081	0.000	0.87	0.0	60.8 15 2	OK		
4.000	67	76 598	-0.139	0.000	0.30	0.0	24.8	OK		
4.001	, 8	75.836	-0.114	0.000	0.69	0.0	46.3	OK		
4.002	9	75.603	-0.227	0.000	0.44	0.0	74.5	OK		
4.003	10	75.552	-0.198	0.000	0.59	0.0	112.6	OK		
4.004	11	75.365	-0.185	0.000	0.64	0.0	114.8	OK		
6.000	12	77.261	-0.089	0.000	0.34	0.0	8.6	OK		
4.005	13	74 962	-0.189	0.000	0.63	0.0	126.9	OK		
4.007	15	74.859	0.009	0.000	0.69	0.0	117.2	SURCHARGED		
1.003	16	74.808	0.398	0.000	3.01	0.0	11.9	SURCHARGED		
1.004	21	73.589	-0.011	0.000	1.00	0.0	4.0	OK		
1.005	18	73.073	-0.027	0.000	0.76	0.0	96.3	OK		
7.000	10 19	73.628	-0.707	0.000	0.15	0.0	176.3	OK		
7.002	21	73.568	-0.688	0.000	0.15	0.0	177.9	OK		
7.003	23	73.518	-0.660	0.000	0.21	0.0	249.7	OK		
7.004	23	73.414	-0.671	0.000	0.25	0.0	291.5	OK		
7.005	24	73.155	-0.837	0.000	0.19 1 35	0.0	312.8 24 6	SURCHARGED		
* 1.006	23	72 595	0.240	0.000	4.35	0.0	2.2	OK		
1.008	24	72.558	-0.167	0.000	0.15	0.0	2.2	OK		
2.000			0							
A Pond	Inte	conne	the ri	pis						
14 1 00LU	in u		1 5 0	Jackt		or				
	- de	signea	Co 30	inag		-				
0							-	P.D.		
PIPE 4'	0+	0	A Prove	TAF	GUNE	CTION	10 1	OND &		
Cuprus	RGE	tts t	t KESUL		and	TH CAR	RIER	PIPE		
SURCIM		Prov	TOF	OVER (mmu	11 Unio				
NOT +	ts A	KEJU								
-		, 4	50 \$ P	1:21	4					
PIPE 4	001	1 7	TIL	full h	m n	pacity	N	220115		
Rot H	ydrai	clic 1	ab 63 -	I'm el						
2201	is :	>117.	21/1 .	· CAN	PACITY	on				
200 11		1111	1082-201	3 Miaro	Drain	age Ltd		-		
		e	91 J U L - Z U L -							

Design Gitenia i) satisfied.

1 IN 30 Year 2 Worst Case 15 MIN for upstream WINTER Camersystem

Opus International Consul	ltants (UK) Ltd	Page 1
18D High Street	C8352	
Llandaff	Extension SWS	
Cardiff CF5 2DZ	RO	
Date 08/07/14	Designed by LKC	DELLECE
File C8352-Sawmills E	Checked by	
Micro Drainage	Network 2013.1.1	

Simulation Criteria for Storm

Volumetric Runoff Coeff 0.840Foul Sewage per hectare (1/s) 0.000Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000Hot Start (mins)Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Hot Start Level (mm)0Run Time (mins)Manhole Headloss Coeff (Global)0.500Output Interval (mins)

Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 7

Synthetic Rainfall Details

Rainfall Model	FSR	Profile Type	Winter
Return Period (years)	30	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	19.000	Storm Duration (mins)	15
Ratio R	0.388		

18D High	h Stre	et		C8352			[and the state of the	
Llandaf	f			Extensio	on SWS		5	V.78	200
Cardiff	CF5 2	DZ		R0					STO
Date 08	/07/14			Designed	by LK	0		357 (าที่กร
File C8	352-Sa	wmill	s E	Checked	bv				
Micro D	rainac	P	5 2	Network	2013.1	.1			
meror b.	Lanag								
	Sur	nmary	of Res	sults for	15 minu	ite 30	year Wir	nter	(Storm)
	Mar	gin fo	r Flood	Risk Warnin	ng (mm) imester (2 5 5000	nd Increm	ent (F	300.0
				DTS	Status	2.0 0000	nd moren	0 (2	OFF
				DVD	Status				ON
				Inertia	Status				ON
			Water	Surcharged	Flooded			Pipe	
		US/MH	Level	Depth	Volume	Flow /	Overflow	Flow	a 1 - 1
	PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(1/s)	Status
	1.000	1	76.737	-0.063	0.000	0.97	0.0	66.0	OK
	1.001	2	76.367	0.067	0.000	1.69	0.0	6.2	SURCHARGED
	2.000	2	75.980	0.380	0.000	1.77	0.0	122.6	SURCHARGED
	1.002	4	75.139	0.099	0.000	1.95	0.0	1.1	SURCHARGEL
	3.000	5	15.332	-0.100	0.000	1,55	0.0	28.8	OKCHARGEL
	4.000	7	76.655	-0.070	0.000	0.79	0.0	50.0	OF
	5.000	8	76.137	0.187	0.000	1.17	0.0	78.5	SURCHARGED
	4.002	9	75.999	0.169	0.000	0.74	0.0	124.4	SURCHARGED
	4.003	10	75.935	0.185	0.000	1.01	0.0	193.0	SURCHARGEI
	4.004	11	75.722	0.172	0.000	1.12	0.0	200.0	SURCHARGEL
	6.000	12	77.289	-0.061	0.000	0.65	0.0	228 6	SURCHARGED
	4.005	14	75 252	0.102	0.000	0.98	0.0	197.2	SURCHARGEI
	4.007	15	75.181	0.331	0.000	1.04	0.0	176.6	SURCHARGEI
	1.003	16	75.091	0.681	0.000	3.84	0.0	15.2	SURCHARGEI
	1.004	21	73.616	0.016	0.000	1.17	0.0	4.6	SURCHARGEI
	1.005	18	73.219	0.119	0.000	0.00	0.0	0.0	SURCHARGEL
	7.000	18	73.862	-0.538	0.000	0.15	0.0	341.6	OF
	7.001	21	73.791	-0.466	0.000	0.30	0.0	350.0	OF
	7.003	23	73.740	-0.437	0.000	0.41	0.0	486.7	OF
	7.004	23	73.632	-0.452	0.000	0.48	0.0	559.8	OF
	7.005	24	73.390	-0.602	0.000	0.36	0.0	596.8	OF
	1.006	23	73.382	0.483	0.000	6.12	0.0	34.6	SURCHARGEI
	1.007	24	72.639	-0.087	0.000	0.25	0.0	3.7	OI
						Surc	HARGE	ON	LY
						No	FLOODIN	JG-	
						1.0			
							Houl	fore	ntaine
					F	lows	aler	-	. 1
					4	selow	core	un	9
									OK
			0	©1982-201	3 Micro	Draina	age Ltd		

1 in 30 Year & Worst case for 1920 min & downstream Winter Storage Page 1 Opus International Consultants (UK) Ltd 18D High Street C8352 Extension SWS Llandaff Cardiff CF5 2DZ R0 Date 08/07/14 Designed by LKC File C8352-Sawmills E... Checked by Network 2013.1.1 Micro Drainage Simulation Criteria for Storm Foul Sewage per hectare (1/s) 0.000 Volumetric Runoff Coeff 0.840 Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins)0MADD Factor * 10m³/ha Storage 2.000Start Level (mm)0Run Time (mins) 3840 Hot Start Level (mm) Output Interval (mins) 24 Manhole Headloss Coeff (Global) 0.500 Number of Input Hydrographs 0 Number of Storage Structures 7 Number of Online Controls 1 Number of Time/Area Diagrams 0 Number of Offline Controls 7 Synthetic Rainfall Details Profile Type Winter FSR Rainfall Model 30 Cv (Summer) 0.750 Return Period (years) Region England and Wales Cv (Winter) 0.840 19.000 Storm Duration (mins) (1920 M5-60 (mm) Ratio R 0.388 Stom Peak between 1860 - 1980 mins ©1982-2013 Micro Drainage Ltd

18D High Street C8352 Llandaff Extension SWS Cardiff CF5 2DZ R0 Date 08/07/14 Designed by LKC File C8352-Sawmills E Checked by Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) (1/s) Status 1.000 1 76.537 -0.263 0.000 0.0 2.6 OK
Llandaff Cardiff CF5 2DZ Date 08/07/14 File C8352-Sawmills E Checked by Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) Margin for Flood Risk Warning (mm) Ma
Cardiff CF5 2DZ R0 Date 08/07/14 Designed by LKC File C8352-Sawmills E Checked by Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Date 08/07/14 Designed by LKC File C8352-Sawmills E Checked by Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
File C8352-Sawmills E Checked by Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Neter Surcharged Flooded Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Micro Drainage Network 2013.1.1 Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m ³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m³) 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Summary of Results for 1920 minute 30 year Winter (Storm) Margin for Flood Risk Warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m³) 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Margin for Flood Risk Warning (mm) Analysis Timestep 2.5 Second Increment (Extended) DTS Status DVD Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow FN Name (m) (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Margin for Flood Risk warning (mm) 300.0 Analysis Timestep 2.5 Second Increment (Extended) DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m³) 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
DTS Status OFF DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
DVD Status ON Inertia Status ON Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
Water Surcharged Flooded Pipe US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m ³) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
WaterSurchargedFloodedPipeUS/MHLevelDepthVolumeFlowFlowPNName(m)(m ³)Cap.(1/s)(1/s)Status1.000176.537-0.2630.0000.040.02.6OK
US/MH Level Depth Volume Flow / Overflow Flow PN Name (m) (m) (m ³) Cap. (1/s) (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
PN Name (m) (m ²) Cap. (1/s) Status 1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
1.000 1 76.537 -0.263 0.000 0.04 0.0 2.6 OK
1.001 2 76.261 -0.039 0.000 0.68 0.0 2.5 OK
2.000 2 /5.354 -0.246 0.000 0.08 0.0 5.2 OK 1.002 4 75.183 0.143 0.000 1.68 0.0 6.1 SUBCHARGED
3.000 5 75.133 0.053 0.000 0.06 0.0 4.3 SURCHARGED
4.000 6 77.223 -0.202 0.000 0.02 0.0 1.2 OK
4.001 7 76.526 -0.199 0.000 0.03 0.0 2.0 OK
5,000 8 75.694 -0.256 0.000 0.05 0.0 3.5 OK
4.003 10 75.364 -0.386 0.000 0.05 0.0 9.5 OK
4.004 11 75.177 -0.373 0.000 0.06 0.0 9.9 OK
6.000 12 77.216 -0.134 0.000 0.03 0.0 0.7 OK
4.005 13 75.156 -0.294 0.000 0.06 0.0 11.8 OK
4.007 15 75.132 0.282 0.000 0.06 0.0 10.7 SURCHARGED
1.003 16 75.129 0.719 0.000 3.93 0.0 15.5 SURCHARGED
1.004 21 74.156 0.556 0.000 2.79 0.0 11.0 SURCHARGED
1.005 18 73.783 0.683 0.000 4.29 0.0 10.5 SURCHARGED
7.000 18 73.442 -0.938 0.000 0.01 0.0 7.6 OK
7.002 21 73.437 -0.819 0.000 0.01 0.0 17.1 OK
7.003 23 73.436 -0.741 0.000 0.02 0.0 24.5 OK
7.004 23 73.435 -0.650 0.000 0.02 0.0 29.1 OK
1.006 23 73.432 0.532 0.000 4.72 0.0 26.7 SURCHARGED
1.007 24 73.344 0.618 0.000 0.97 0.0 14.4 SURCHARGED
1.008 25 72.676 -0.049 0.000 0.97 0.0 14.4 OK 14.4 ID 2 14 01
- Surcharge Only
- No flooding
ive proving
- No Overflow
Change Volume Sulfgent
. Storage toward support
©1982-2013 Micro Drainage Ltd
Denon Intina III) Satisfied

OK

1 in 100 Year 6 Hour (300 min) Winter + 30 % CC

Onus Tata 11 1 0 1		Dama 1
Opus International Consul	tants (UK) Ltd	Lade T
IND High Street	C8352	
Llandafi	Extension SWS	IL MERO M
Cardiff CF5 2DZ	RU	
Date 08/07/14	Designed by LKC	Lenge
File C8352-Sawmills E	Checked by	
Micro Drainage	Network 2013.1.1	
Si Volumetric Runof	mulation Criteria for Sto f Coeff 0.840 Foul Sewage	rm per hectare (1/s) 0.000
Hot Start Hot Start Hot Start Lev Manhole Headloss Coeff ((mins) 0 MADD Factor rel (mm) 0 Global) 0.500 Outpu	* 10m ³ /ha Storage 2.000 Run Time (mins) 720 t Interval (mins) 6
Number of Input Number of Onl Number of Offl	Hydrographs 0 Number of Stora ine Controls 1 Number of Time/ ine Controls 7	ge Structures 7 Area Diagrams 0
	Synthetic Rainfall Details	2
Rainfall Mod Return Period (year Regi M5-60 (m Ratio	el FSR s) 100 on England and Wales m) 19.000 Storm Dur R 0.388	Profile Type Winter Cv (Summer) 0.750 Cv (Winter) 0.840 ation (mins) 360
8		
©1	982-2013 Micro Drainage L	td

18D High Str	eet		C8352			[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Llandaff			Extensi	on SWS		5	V7A	COCO
Cardiff CF5	2DZ		RO	RO				Sho .
Date 08/07/1	4		Designe	d by LK	C		DR	21192
File C8352-S	awmill	ls E	Checked	by				
Micro Draina	ge		Network	2013.1	.1			
Sum	mary	of Res	ilts for í	360 min	ute 10	0 vear W	inter	(Storm)
<u>.5 uii</u>	ullary	OI NES		<u>, , , , , , , , , , , , , , , , , , , </u>	ucc io	o rear n	111001	200.0
Ma	rgin fo	or Flood	Risk Warni Analysis T	ng (mm) imestep	2.5 Sec	ond Incre	ment (1	Extended)
			DTS	Status				OFF
			DVD	Status				ON
			Inertia	Status				ON
		Water	Surcharged	Flooded			Pipe	
	US/MH	Level	Depth	Volume	Flow /	Overflow	FLOW	Ct at no
PN	Name	(m)	(m)	(m ³)	Cap.	(1/5)	(1/5)	Status
1.000	1	76.598	-0.202	0.000	0.23	0.0	15.9	OK
1.001	2	76.487	0.187	0.000	2.43	0.0	9.0	SURCHARGED
2.000	2	75.687	0.087	0.000	0.46	0.0	32.0	SURCHARGED
1.002	4	75.681	0.641	0.000	3.03	0.0	11.0	SURCHARGED
3.000	5	75.626	0.546	0.000	0.38	0.0	26.5	FLOOD RISK
4.000	67	76 567	-0.169	0.000	0.14	0.0	12.5	OK
5,000	/ 8	76 235	0.285	0.000	0.30	0.0	20.1	FLOOD RISK
4.002	9	76.215	0.385	0.000	0.20	0.0	34.4	SURCHARGED
4.003	10	76.114	0.364	0.000	0.29	0.0	55.8	SURCHARGED
4.004	11	75.998	0.448	0.000	0.32	0.0	57.8	SURCHARGED
6.000	12	77.240	-0.110	0.000	0.16	0.0	4.0	OK
4.005	13	75.890	0.440	0.000	0.36	0.0	69.3	SURCHARGED
4.006	14	75.774	0.624	0.000	0.34	0.0	69.0	SURCHARGED
4.007	15	75.652	0.802	0.000	1 99	56.8	103.7	SURCHARGED
* 1.003	21	73.550	0.953	0.000	3.16	2.2	12.5	SURCHARGED
1.004	18	74.102	1.002	0.000	4.94	2.0	12.1	FLOOD RISK
7.000	18	74.400	0.000	0.000	0.04	0.0	44.0	FLOOD RISK*
7.001	19	74.335	0.000	0.000	0.08	0.0	89.4	FLOOD RISK*
7.002	21	74.256	0.000	0.000	0.08	0.0	89.2	OK
7.003	23	74.177	0.000	0.000	0.11	0.0	129.1	OK
7.004	23	74.085	0.000	0.000	0.13	0.0	165 2	OK
7.005	24	13.992	1 055	0.000	0.10 8 76	20.0	49 5	SURCHARGED
1 007	23	73.519	0.793	0.000	0.97	0.0	14.4	SURCHARGED
1.008	25	72.676	-0.049	0.000	0.97	0.0	14.4	OK
A - Pont	1 Int	eronn	uting P	ipes				
					- Se	incharg	c Or	rly
					- N	o flood	ing	
					- 01	restion	rest	icted to
					po	nd inte	ron	recting p
					on flo	ly - a	des foi	igned &
				- 3	Suffe	cient.	storay	pc Provide
					1.11			

Resign Criteria iv) satisfied

BYPASS SEPARATORS

APPLICATION AREAS:

• Car parks, hard standings, roads and similar areas of low risk where it is not required to provide full treatment for rare high flows

PERFORMANCE:

- Full treatment of rainfall flows of up to 5mm/hr (99% of rainfall events)
- Automatic closures are not appropriate for bypass Separators, but filters for Class 1 models, and monitors
- for both Classes, are usually fitted
- Single shaft access on Class 2 models allows improved cost savings

PI () = 2064m2 $\begin{array}{c}
(2) = 4155m^2 \\
(3) = 3623m^2 \\
(4) = 7914m^2
\end{array}$

Treated flow path Bypass flow path

Coalescing Filter designed for easy removal

Bypass Separator - Core Range. Class 1 and Class 2. Technical Data

Larger models to 4m diameter are available - largest is NSB515 with 274,447 litres capacity, 22.5m length

Unit Reference	Nominal Size	Area Drained sq.m	Nett Capacity Litres	Length excl. Silt	Diameter	Silt Capacity Litres	Length incl. Silt	Overall Height	Inlet to Base	Outlet to Base	Max Pipe
NSB1.5/2*	1.5	833	1000	1400	1000	150	1657	1650	1150	1100	300
NSB3/2*	3	_ 1667	1000	1650	1000	300	2250	1650	1150	1100	300
NSB4.5/2*	4.5	2500	1485	2250	1000	450	2594	1650	1150	1100	300
NSB6/2*	6	3333	1980	2650	1000	600	3414	1750	1150	1100	300
NSB7.5/2*	7.5	4167	2475	2343	1200	750	3007	1750	1150	1100	300
NSB10/2*	10	5556	3300	-3073	1200	1000	3957	2150	1400	1350	300
NSB15/2*	15	8333	4950	2995	1500	1500	3844	2545	1750	1700	450
NSB20/2*	20	11111	6600	3929	1500	2000	5060	2545	1750	1700	450

NSB25/2*	25	13889	8250	3542	1800	2500	4524	3400	2100	2050	600
NSB30/2*	30	16667	9900	4190	1800	3000	5369	3400	2100	2050	600
NSB40/2*	40	22222	13200	5487	1800	4000	7059	3400	2100	2050	600
NSB50/2*	50	27778	16500	3978	2500	5000	4992	3900	2400	2350	600
NSB60/2*	60	33333	19800	4450	2500	6000	5673	3900	2400	2350	600
NSB70/2*	70	38889	23100	5323	2500	7000	6749	3900	2400	2350	600
NSB80/2*	80	44444	26400	5795	2500	8000	7425	3900	2400	2350	600
NSB90/2*	90	50000	29700	6467	2500	9000	8301	3900	2400	2350	600
NSB100/2*	100	55556	33000	7139	2500	10000	9177	3900	2400	2350	600

Inlet/Outlet Pipework Configurations

	1	1
Separator se	lection exa	mple:
NSB3/2	1/225/	CF

Separator ref. 쁼 Class selected Pipework size -Pipework configuration

N.B. All dimensions are in mm. *Add class of separator required i.e. class 1 or class 2. Shaded area's indicate additional capacity and increased length to provide integral silt capacity – add 'S' suffix in front of forward slash in reference code (e.g. NSB3/21-becomes NSB3S/21). Max. pipe sizes refer to standard models - larger sizes available to request,

SILT TRAPS AND SEDIMENTATION UNITS

- Large quantities of silt can be associated with Separator operations, particularly in car wash facilities. Separator capacity may need to be increased to accommodate this, or a sedimentation unit or silt trap can be installed nearby, upstream to prevent blockages
- A wide range of products are available from Conder with heavy duty access hatches for easy sediment removal by hand or tanker
- A special 530mm trap is available for use with automatic systems with under chassis washing. This model is generally installed between the chassis wash arms. For particularly large capacities, a sedimentation tank can perform the same function

During initial storm stages any pollutants present on site are washed off and carried in rainwater to the Separator retention chamber.

and I = Smight (Swednedage) = = compile (Fert and ange)

· SIZE LINEAR DRAINS - Wont case Catchment Area = 2190m² - IENGTH OF LINEAR DRAIN = 44m - ATTROX 1º1, (1:100) SLOPE

Notes for ACO MultiDrain M200D Hydraulic tables

Maximum capacities for each constant depth channel, assuming uniform lateral inflow to the channel.

Q (I/s) is the maximum total flow that the channel can carry.

q (I/s/m) is the maximum possible lateral inflow.

The maximum possible catchment depth is q_i , where i is the rainfall intensity in $l/s/m^2$.

A (m^2) is the maximum area that can be drained at a rainfall intensity of 50mm/h (0.014 I/s/m^2) .

At other rainfall intensities, the area can be determined by proportion, e.g. at 75mm/h, the maximum area drained will be the tabulated area x 50/75.

To Ensure Design Achieves Capacity requirements for criteria ii) & flows be retained below surface for 1:30 year Return Period blis approximately halves bie shown Capacity

: Select nearest to serve; 44m @ 10% for catchment ~ 4380m

ACO M200D constant depth channels

M200D 0.0 Overall depth 265mm														
Length	Slope %													
to outlet	0%		Service .	0.5%	120 2010		1%		A BAN					
(m)	Q (I/s)	q (l/s/m)	A (m ²)	Q (I/s)	q (l/s/m)	A (m ²)	Q (I/s)	q (l/s/m)	A (m²)					
20	25.5	1.27	1835	32.2	1.61	2318	38.9	1.94	2799					
40	23.5	0.59	1693	35.4	0.89	2552	44.4	1.11	3197					
60	22.1	0.37	1590	37.3	0.62	2687	47.6	0.79	3426					
80	21.0	0.26	1515	38.6	0.48	2776	49.8	0.62	3588					
100	19.9	0.20	1433	39.3	0.39	2830	51.1	0.51	3679					
120	19.1	0.16	1374	40.1	0.33	2886	52.1	0.43	3750					
140	18.3	0.13	1320	40.5	0.29	2913	52.6	0.38	3790					
160	17.6	0.11	1267	41.0	0.26	2949	52.8	0.33	3802					
180	16.7	0.09	1205	41.2	0.23	2968	52.9	0.29	3810					
200	16.4	0.08	1181	41.4	0.21	2981	53.0	0.27	3816					

M200D 10.0 Overall depth 315mm													
Length	Slope %												
to outlet	0%	A REALING		0.5%	the state		1%						
(m)	Q (I/s)	q (l/s/m)	A (m ²)	Q (l/s)	q (l/s/m)	A (m ²)	Q (l/s)	q (l/s/m)	A (m²)				
20	34.5	1.73	2485	42.8	2.14	3082	50.9	2.55	3666				
40	32.1	0.80	2313	46.6	1.16	3352	58.0	1.45	4176				
60	30.2	0.50	2173	49.0	0.82	3529	61.7	1.03	4441				
80	28.6	0.36	2062	50.3	0.63	3623	64.3	0.80	4631				
100	27.3	0.27	1966	51.3	0.51	3694	66.3	0.66	4774				
120	26.0	0.22	1875	52.1	0.43	3750	67.7	0.56	4873				
140	24.9	0.18	1794	52.8	0.38	3800	69.0	0.49	4969				
160	24.3	0.15	1751	53.3	0.33	3836	69.8	0.44	5023				
180	23.4	0.13	1685	53.6	0.30	3862	70.7	0.39	5093				
200	22.6	0.11	1627	53.8	0.27	3874	71.4	0.36	5141				

M200D 20.0 Overall depth 365mm														
Length	Slope %													
to outlet	0%	NSS ILLIN	108,822	0.5%	States.	and the second	1%							
(m)	Q (I/s)	q (l/s/m)	A (m ²)	Q (I/s)	q (l/s/m)	A (m ²)	Q (I/s)	q (l/s/m)	A (m²)					
20	44.6	2.23	3213	54.3	2.71	3907	63.7	3.19	4589					
40	41.4	1.04	2984	58.6	1.46	4216	71.8	1.79	5167					
60	39.1	0.65	2812	61.1	1.02	4398	76.4	1.27	5504					
80	37.0	0.46	2667	63.0	0.79	4533	79.6	1.00	5731					
100	35.3	0.35	2542	64.3	0.64	4630	81.7	0.82	5882					
120	33.8	0.28	2436	65.0	0.54	4683	83.8	0.70	6031					
140	32.4	0.23	2330	65.5	0.47	4717	85.1	0.61	6129					
160	31.5	0.20	2269	66.1	0.41	4758	86.2	0.54	6209					
180	30.4	0.17	2190	66.4	0.37	4782	87.1	0.48	6273					
200	29.6	0.15	2131	66.8	0.33	4810	87.8	0.44	6322					

Select M2000 10.0.

For M200D Shallow channel hydraulics tables see next page

		,	Summitky	ALL FLOW'S KERTINED WITHIN GHANNEL UP TO I IN 5 KEAR	Event.	For I in 30 Yegg Scent	GARANELS (1) & (2) WILL FAURDACH DATO CONCETE SLAPS	BY 1.6m & 1.3m RESPECTIVELY To 69-UN SIDE OF THE GAMINEL					Surcharged N = 30yr Tc A r K X m Cm N = 30yr (min) (m²) r K X m Cm L Tc	10.5 0.2294 1.000 0.048 0.763 1.0149 4741760 188.9 9.8 11.9 0.3192 0.999 0.056 0.756 1.007 4764834 189.5 9.0	38.7 0.625 1.000 0.117 0.750 1 4785000 446.0 19.7 46.8 0.625 1.000 0.117 0.750 1 4785000 539.8 23.9 99.0 0.625 1.000 0.117 0.750 1 4785000 539.8 23.9 99.0 0.625 1.000 0.117 0.750 1 4785000 539.8 23.9
		Eq (14)	Eq (13)	Eq (7) Eq (22)	Eq (21)	Eq (23)	Eq (24)	Eq (25)	Table 1	Table 1	Fig. 3		rged N = 1 yr N = L (m) (m)	392.7 22.8 187.8 484.1 24.8 231.6	1829.3 80.9 875.1 2213.9 97.9 1059.1 4679.7 206.9 2238.7
				(triangular channel) (Surcharged triangular channel)	(Surcharged triangular channel)			(Unsurcharged Triangular channel) (Surcharged channel)	Concrete channel - average; NO posts in channel	Concrete - average	iod of 5 years(mm) Pontrilas (S.W Hereford)	el carriageway (1 in)	0 W ₆ A r m G _m (m) (m ²)	32.50 0.207 0.999 1 4785000 37.30 0.250 0.999 1 4785000	45.00 0.625 1.000 1 4785000 40.00 0.525 1.000 1 4785000 25.20 0.625 1.000 1 4785000
xtension	tsed on HA37/97	10 ⁶ (2.65-m)	n of road drained (m) S ^{0.5} /n) x (ry) ^{0.567} x (N-0.4) ^{-0.362} x (A/[W ₆ (2minM50]]) ^{1.62}	ulic radius factor $ z_2 / [(1+b_1^2)^{0.5} + (1+b_2^3)^{0.5}]$ $\cdot b_2y_1 + b_3(y_3 - y_1)] / [(b_1^2+1)^{0.5}y_3 + (b_2^2+1)^{0.5}y_1 + (b_3^2+1)^{0.5}(y_3 - y_1)]$	$(+b_2)y_3^2 - b_2(y_3 - y_1)^2 + b_3(y_3 - y_1)^2]$	ulic conveyance factor b ₁ +b ₂]y ₃ ⁸³ - b ₂ (y ₃ -y ₁) ⁸³ + (n/nc)b ₃ (y ₃ -y ₁) ⁸³]	۲ s	e factor of channel 1 X - 1 + (X ² + 14/ 3X + 1) ^{1/2}]	 Longitudinal gradient of channel (m/m) Mannings roughness coefficient (channel) 0.013 	 Mannings roughness coefficient (concrete slab) 0.013 	 Design depth of channel (m) Surcharged depth of channel (m) Surcharged depth of channel (m) Return period of storm (years) Cross-sectional area of flow (m²) Cross-sectional area of flow (m²) Cross-sectional area of flow (m²) Return period Suchannel remote from carriadewav (1in 	 Side super or drammer upport or manual super or carriageway (1in) Transverse slope of carriageway adjacent to channe Burcharged width of carriageway (m) Critical storm duration 	nd ih S b ₁ b ₂ b ₃ H y ₁ 2minM5C 1 1 m 1 m (m) (m) (m) (m) (m)	100.00 1.000 30 30 100 1.600 30	100.00 1.000 40 40 100 0.000 0.125 3.0 100.00 1.000 40 40 100 0.000 0.125 3.0 100.00 1.000 40 40 100 0.000 0.125 3.0 100.00 1.000 40 40 100 0.000 0.125 3.0
las Sawmills	lage channelst	= 2.90	= Leng = G _m x	= Hydr = [b ₁ + [b ₁]	= 0.5[()	= Hydr = 3/8 [= Fact = K/y	= Shat = 1/2	ωc	Ъс	Ż Ż Ś Ż Ż Ż	άĞα̈́τ⊢̈́	Ch at		
C8352 - Pontri	Design of drain	G	ů.	L	A	¥	×	E	where				Direction	- Channel 1 Channel 2	Channel 3 Channel 4 Channel 5
														South	North

ອ້	47417 47648	47850 47850 47850
E	1.0149 1.007	
×	0.763 0.756	0.750 0.750 0.750
×	0.048 0.056	0.117 0.117 0.117
L	1.000	1.000 1.000 1.000
А (m ²)	0.294 0.3192	0.625 0.625 0.625
T _c (min)	10.9 11.9	38.7 46.8 99.0
(m)	187.8 231.6	875.1 1059.1 2238.7
T _c (min)	22.8 24.8	80.9 97.9 206.9
(m)	392.7 484.1	1829.3 2213.9 4679.7
е В	4785000 4785000	4785000 4785000 4785000
E	1 41 (41)	
L	0.999	1.000 1.000 1.000
A (m ²)	0.250	0.625 0.625 0.625
° €	32.50 37.30	45.00 40.00 25.20
2minM50 (mm)	3.0	3.0 3.0 3.0
ey (E)	0.099 0.113	0.125 0.125 0.125
۲۲ (m	0.083	0.125 0.125 0.125
тĒ	1.600	0.000 0.000 0.000
b3 Fi	100	100
p 1 2 1 2	30 25	40400
à :	30 25	40 40
%	1.000	1.000
ν	100.00	100.00 100.00 100.00
б		
ъ		
ction	50 -	0 0 4 0

From: Laura K. Curnow <Laura.Curnow@opusinternational.co.uk>
Sent: 15 September 2014 15:14
To: jay@biologicdesign.co.uk
Cc: Jonathan Poynton <JonathanP@pontrilastimber.co.uk>; Mark Lewis
<Mark.Lewis@opusinternational.co.uk>
Subject: C8352 - Pontrilas Sawmills - Flow Control Chamber

Hi Jay,

For ease of installation our recommendation would be to go for a CPM (or similar) precast chamber - their perfect chamber range may be a good solution as we are looking at a single bespoke chamber in this instance and the perfect chamber range would include base and pre-fit hydrobrake and overflow options.

http://www.cpm-group.com/downloads/CPM-Perfect-Manhole-System-2012.pdf Tel 01179 812791 sales@cpm-group.com

We are however flexible and would be happy with a traditional catchpit solution benched appropriately as shown in Hydrobrake standard detail attached – it obviously depends on cost and constructability.

Please note should you opt to seek an alternative flow control manufacturer other than the Hydrobrake product we are calling off we will need to re-run their specific head / flow parameters back through our hydraulic model to ensure equivalent performance.

Kind regards, Laura

Laura Curnow | Senior Engineer | Opus International Consultants (UK) Ltd

Phone +44 29 2053 5523 | Fax +44 29 2036 3797 | Email <u>laura.curnow@opusinternational.co.uk</u> Unit 2 Fountain Court, Fountain Lane, St Mellons, Cardiff, CF3 oFB

Visit us online: <u>www.opusinternational.co.uk</u>

