TECHNICAL NOTE

Project Title: Planning Applications 230312 & 230313 Job Number: CWC190 Land Adjacent to Calgary, Dinedor, HR2 6LQ Subject: Maintenance of Drainage Elements

Date: 11/04/2023

TABLE OF CONTENTS

1. INTE	RODUCTION	1
1.1.	BACKGROUND	1
1.2.	DESIGN UPDATE	3
1.3.	SURFACE WATER MANAGEMENT PLAN	3
1.4.	FOUL DRAINAGE AND TREATMENT	7
1.5.	DRAINAGE DETAILS	10
1.6.	MAINTENANCE	11
2. CON	ICLUSIONS	15
APPEND	NX 1 – REED BED DRAWINGS	16
APPEND	NX 2 – SURFACE WATER DRAINAGE DESIGN REPORT & DRAWINGS	17
APPEND	NX 3 – FOUL DRAINAGE DESIGN REPORT & DRAWINGS	18

1. INTRODUCTION

Background 1.1.

This Technical Note is in support of planning applications 230312 & 230313 and should be read in conjunction with all other information associated with the planning application.

Application 230312 is entitled Application for approval of details reserved by conditions 7 & 8 attached to planning permission P193328/O.

Application 230313 is entitled Application for approval of details reserved by conditions 7 & 8 attached to planning permission 193329/O.

These two applications relate to surface water and foul drainage aspects at a site for the development of 8 houses. This report is an addendum and update to the previous planning submission drainage report entitled "Surface Water Management Plan and Foul Drainage Strategy for Residential Development at Dinedor, Herefordshire" Contract Ref: L0337 dated March 2021 by Hydro-Logic Services. This update is required due to increased climate change allowances plus the need to provide drainage maintenance details.

Figure 1: Site Layout Plan

Figure 2: Aerial View Source Bing Maps - Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation

1.2. Design Update

To update the design the DEFRA Survey Data download webservice was utilised to obtain current LiDAR mapping of the site and the surrounding fields. This data was used to produce a 200mm interval contour plan - see an extract showing the existing ground levels in Figure 3.

It should be noted that the LiDAR values do not correspond accurately with the contours shown on the architectural drawings. The DEFRA LiDAR values have been used in this design update to ensure accuracy.

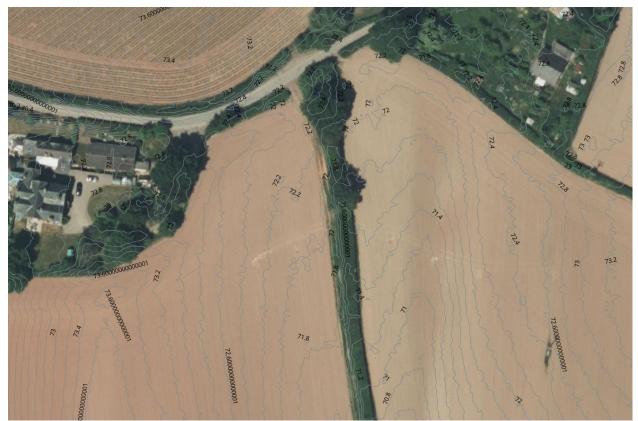


Figure 3: Existing Ground Levels from LiDAR

Climate change information has been updated by the Government and EA since the previous SWMP report and the DEFRA Climate Change Allowances webpage shows that for Herefordshire the upper end rainfall allowances that are applicable for housing for the 3.3% AEP event are 40% at the 2070s, plus for the 1% AEP event are 45% for the 2070s.

The surface water drainage design has thus been assessed against up to 45% climate change plus 10% Urban Creep as required by the council.

1.3. Surface Water Management Plan

The proposed development is located adjacent to the public highway with the eastern and western boundary adjoining existing properties Hillview and Calgary respectively. The southern site boundary will be adjacent to retained agricultural land.

As high groundwater levels were detected infiltration and soakaways are not appropriate at this location and a design utilising attenuation plus a controlled rate of outflow has been utilised. The maximum outflow rate remains at 2 l/s and the dry basin has been amended to accommodate the additional climate change allowance plus the 10% hard paved area allowance to take urban creep into account.

Complete details of the design approach and the results are included in the drainage report within Appendix 2 which includes design settings, chamber (node) details, sewer (links) details, a complete Pipeline Schedule, plus a complete Manhole Schedule.

The Design Settings *Figure 4* and the Simulation Settings *Figure 5* show that FEH rainfall was utilised and climate change of 40% or 45% was applied – together with 10% creep for the 1 in 100 year event.

Design Settings

Rainfall Methodology Return Period (years) Additional Flow (%) CV Time of Entry (mins) Maximum Time of Concentration (mins) Maximum Rainfall (mm/hr)	100 0 0.750 4.00 30.00	Minimum Velocity (m/s) Connection Type Minimum Backdrop Height (m) Preferred Cover Depth (m) Include Intermediate Ground Enforce best practice design rules	Level Soffits 1.200 0.500 √
--	------------------------------------	--	--------------------------------------

Figure 4: Design Settings for Surface Water Drainage

Simulation Settings

Summer CV 0.3 Winter CV 0.8	340 ormal	Drain Down Additional Stor Check Disch Check Discha ear +45% 360 ons 240	rage (m³/ha) arge Rate(s) arge Volume	3600 20.0 x √ 83	
	1 1	1 1	Additional Fl	ow	
	C %)	(A %)	(Q %)		
2	0	0		0	
30	40	0		0	
100	45	10		0	
<u>Pre-de</u>	velopment Disch	narge Volume			
	-				
Site Makeu			riod (years)	100	
Greenfield Metho			Change (%)	45	
Positively Drained Area (ha			ation (mins)	360	
Soil Inde		Bett	erment (%)	0	
SPI		Dunoff	PR olume (m³)	0.386	
CW	/ 130.000	KUNOT V	olume (m ²)	83	
Node Bas	in Online Hydro	-Brake® Contr	ol		
Flap Valve √ Replaces Downstream Link √ Invert Level (m) 70.125 Design Depth (m) 0.500	Produ Min Outlet Di		√ CTL-SHE-007 0.100	e upstream st 5-2000-0500-2	-
Design Flow (I/s) 2.0	Min Node Diar	neter (mm)	1200		
Node Bas	in Depth/Area S	torage Structu	ire		
Base Inf Coefficient (m/hr) 0.00000	Safety Factor	2.0	Invort	t Level (m) 7	0.230
Side Inf Coefficient (m/hr) 0.00000	Porosity		ne to half em		
Depth Area (m) (m ²) 0.000 400.0	Inf Area De (m²) (epth Area m) (m²) .970 632.9	Inf Area (m²) 450.0		

Figure 5: Modelling Simulation Settings for Surface Water Drainage

The areas drained to each part of the network has been taken from the approved planning drawings, with the shaded catchment areas shown in Figure 11. The catchment connected to each part of the network is detailed in Figure 6 and totals 2,240m². To control the rate of outflow to the ditch a dry basin with a basal area of 400m² and 1 in 3 side slopes is proposed. Infiltration into the soil has been ignored which is conservative. To suit the pipework arrangements the basin is 970mm deep and thus has a plan area at ground level of 633m².

As shown by the hydraulic modelling this size of basin is more than adequate for this site with a peak water level of 445mm during the 240 minute Winter 1 in 100 year plus 45% Climate Change plus a 10%

Creep allowance design event, see Figure 7 . At this provides a large freeboard the design is also resilient if the climate changes further in the future.

				<u>Nodes</u>				
Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Width (mm)	Easting (m)	Northing (m)	Depth (m)
2			72.800	1200		-31.183	46.179	0.804
5			72.800	600		-28.445	15.927	1.101
12			72.000	600		6.324	18.802	1.018
9			71.400	1200		32.196	21.266	0.835
Basin			71.200	1200		11.836	-5.996	1.075
8	0.020	4.00	72.000	600		47.253	49.103	0.650
6	0.015	4.00	71.800	600		31.648	67.671	0.700
7	0.083	4.00	71.800	1200		26.720	53.297	0.952
10	0.004	4.00	72.000	600		3.723	54.666	0.700
11	0.013	4.00	72.000	600		6.050	34.681	0.834
1	0.067	4.00	72.800	1200		-32.493	53.962	0.725
4	0.011	4.00	72.800	600		-40.902	33.437	0.725
3	0.011	4.00	72.600	600		-29.107	34.800	0.700
13_OUT			70.800	400	1000	12.166	-27.048	0.900

Figure 6: Design Settings for Surface Water Drainage

Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.22%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	2	11	72.411	0.415	50.8	0.4693	0.0000	SURCHARGED
15 minute winter	5	11	71.836	0.137	66.5	0.0387	0.0000	ОК
15 minute winter	12	10	71.040	0.058	13.9	0.0163	0.0000	OK
15 minute winter	9	11	71.237	0.672	81.8	0.7604	0.0000	FLOOD RISK
240 minute winter	Basin	240	70.570	0.445	31.7	150.7326	0.0000	SURCHARGED
15 minute winter	8	11	71.444	0.094	16.0	0.0889	0.0000	OK
15 minute winter	6	11	71.398	0.298	12.2	0.2231	0.0000	SURCHARGED
15 minute winter	7	11	71.390	0.542	80.7	1.6521	0.0000	SURCHARGED
15 minute winter	10	10	71.345	0.045	3.5	0.0187	0.0000	ОК
15 minute winter	11	10	71.254	0.088	13.9	0.0542	0.0000	OK
15 minute winter	1	11	72.525	0.450	54.8	1.4220	0.0000	FLOOD RISK
15 minute summer	4	10	72.130	0.055	9.1	0.0340	0.0000	ОК
15 minute winter	3	11	72.257	0.357	58.3	0.2201	0.0000	SURCHARGED
15 minute summer	13_OUT	1	69.900	0.000	2.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	2	1.001	3	50.5	1.269	1.064	0.4600	
15 minute winter	5	1.003	Basin	66.9	2.226	0.692	1.4444	
15 minute winter	12	5.002	Basin	13.8	0.688	0.144	0.5857	
15 minute winter	9	3.002	Basin	81.1	2.043	1.371	1.3533	
240 minute winter	Basin	Hydro-Brake®	13_0UT	2.0				180.8
15 minute winter	8	4.000	9	15.6	1.190	0.586	0.4629	
15 minute winter	6	3.000	7	12.6	0.892	0.331	0.4756	
15 minute winter	7	3.001	9	67.9	1.231	0.655	2.2883	
15 minute winter	10	5.000	11	3.5	0.384	0.113	0.1863	
15 minute winter	11	5.001	12	13.9	1.087	0.364	0.2027	
15 minute winter	1	1.000	2	50.8	1.279	0.978	0.3139	
15 minute summer	4	2.000	5	9.1	0.668	0.132	0.3453	
15 minute winter	3	1.002	5	58.5	1.474	1.382	0.7259	

Figure 7: Modelling Results for 100 year plus Climate Change plus Creep

The dry basin will be constructed in accordance with SuDS Manual Chapter 22 with 1 in 3 side slopes, plus the design values detailed in this report. A section through the inlet pipework, basin and outfall is shown in Figure 8.

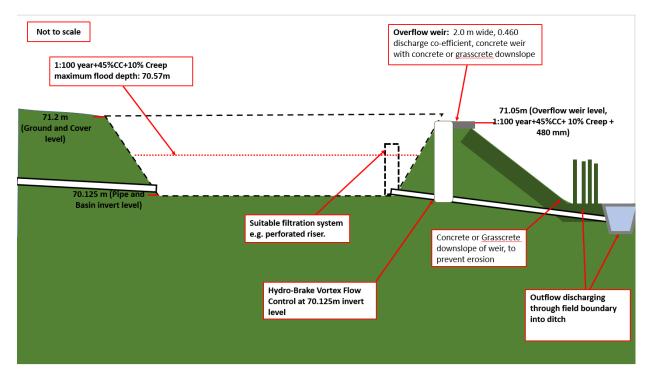


Figure 8: Dry Basin Section

The reed bed location has been determined by ARM and is shown on drawing number RBS 4667/2 Rev A, included in Appendix 1.

1.4. Foul Drainage and Treatment

The foul drainage gravity networks have been designed in Causeway Flow following the methodology within Sewers for Adoption/the Sewerage Sector Guidance by UK Water.

Complete details of the design approach and the results are included in the drainage report within Appendix 3 which includes design settings, chamber (node) details, sewer (links) details, a complete Pipeline Schedule, plus a complete Manhole Schedule. The Foul Design Settings plus details of the chambers (Nodes) and sewers (Links) are shown in Figure 9.

Design Settings

Frequency of use (kDU)	0.50	Minimum Velocity (m/s)	1.00
Flow per dwelling per day (I/day)	4000	Connection Type	Level Soffits
Domestic Flow (I/s/ha)	0.0	Minimum Backdrop Height (m)	2.000
Industrial Flow (I/s/ha)	0.0	Preferred Cover Depth (m)	0.450
Additional Flow (%)	0	Include Intermediate Ground	\checkmark

Nodes

Name	Dwellings	Cover Level (m)	Manhole Type	Width (mm)	Easting (m)	Northing (m)	Depth (m)
5	1	72.800	Adoptable		-36.394	36.408	1.000
6	1	72.340	Adoptable		-13.426	37.613	0.923
PTP1		72.300	Adoptable		-6.416	37.811	1.050
8		72.200	Adoptable		-2.862	17.561	1.361
10		71.200	Adoptable		7.984	-1.448	1.406
Reed Bed		70.600	Adoptable		19.259	-46.191	1.267
11_OUT		70.300	Headwall	900	13.705	-54.459	1.313
2	2	71.800	Adoptable		30.096	70.006	0.550
3	1	71.800	Adoptable		23.126	55.262	1.329
9		72.000	Adoptable		5.835	11.996	1.934
1	1	72.000	Adoptable		41.521	59.837	0.800
PTP2		71.800	Adoptable		2.676	51.122	1.538

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)
3.000	5	6	23.000	1.500	71.800	71.417	0.383	60.0	100
3.001	6	PTP1	7.013	1.500	71.417	71.300	0.117	60.0	100
3.002	PTP1	8	20.560	1.500	71.250	70.839	0.411	50.0	150
3.003	8	9	10.325	1.500	70.839	70.066	0.773	13.4	150
1.004	10	Reed Bed	46.142	1.500	69.794	69.333	0.461	100.0	150
1.005	Reed Bed	11_OUT	9.960	1.500	69.333	68.987	0.346	28.8	150
2.000	2	3	16.308	1.500	71.250	70.521	0.729	22.4	100
1.001	3	PTP2	20.865	1.500	70.471	70.262	0.209	100.0	150
1.002	PTP2	9	39.253	1.500	70.262	70.066	0.196	200.0	150
1.003	9	10	13.615	1.500	70.066	69.794	0.272	50.0	150
1.000	1	3	18.955	1.500	71.200	70.521	0.679	27.9	100

Figure 9: Foul Drainage Design Settings

Primary and secondary treatment of the foul flows will be undertaken utilising two One2Clean biological only sewage package treatment plants by Graf, all in accordance with the General Binding Rules for Small Sewage Discharges, UK best practice, plus the Building Regulations Part H.

The total daily flow for the entire 8 dwellings has been determined as 14 people in the western part of the site creating 1540 l/day, with a further 26 persons in the eastern part of the site generating 2,860

I/day. So the total will be less than 5m³/day and with the discharge being classed as 'to surface water' there will be no requirement for an EA Discharge Permit as the site is within the requirements of the General Binding Rules.

	P Průfinstitu Abwassert GmbH	
PERFORMANC	CE RESULTS	
Otto Graf Carl-Zeiss-Str. 2 - 6, 7933 EN 125 Small wastewater treatment	GmbH 11 Teningen, Germany 66-3	
Small wastewater treatme	ent system one2clean	
SBR plant in one two-zor Test report PIA201		
Nominal organic daily load* Nominal hydraulic daily load Material	0.27 kg/d 0.75 m³/d polypropylene	
Treatment efficiency (nominal sequences)	Efficiency Effluent COD 94.2 % 43 mg/l BODs 98.0 % 7 mg/l SS 96.3 % 14 mg/l NH ₄ -N** 98.3 % 0.5 mg/l Net* 87.0 % 7.9 mg/l Put 80.2 % 1.6 mg/l	
Electrical consumption *at a test influent of \geq 300 mg/ BOD ₅ (mean) **determined for temperatures \geq 12°C in the biore	0.63 kWh/d	
Performance tested by:		
PIA – Prüfinstitut für Abwassertec (PIA GmbH) Hergenrather Weg 30 52074 Aachen, Germany		
This document replaces neither the declaration of performance nor the CE marking.	and ful ADwassertechny	
	ctw	
Notified Body Certified according to BM- No: 1739 ISO 9001-2008	unt - tested - or	mber 2014

Figure 10: PTP Performance Results

1.5. Drainage Details

Complete and comprehensive design details have been produced for this site.

Reed bed design details are included in the design report, calculations and drawings submitted with the planning application. Appendix 1, includes:

- Reed bed Location drawing, number RBS4667/2 Rev A;
- Reed bed details drawing, number RBS 4667/1 Rev A.

Surface Water design data is included within Section 1.3, plus within Appendix 2, including:

- Compete hydraulic modelling report
- Plan drawings of the surface water networks;
- Long section drawings of both networks at 1 to 100 scale horizontally and 1 to 20 vertically.

Foul drainage design data is included within Section 1.4, plus within Appendix 3, including:

- Compete hydraulic modelling report
- Plan drawings of the foul networks;
- Long section drawings of both networks at 1 to 100 scale horizontally and 1 to 20 vertically.

The overall site drainage layout plan arrangement is shown in Figure 11, which also repeats the pipework sizes and gradients, plus chamber cover and invert levels - all of which are provided in complete detail within the various Manhole plus Pipeline schedules.

Land Adjacent to Calgary, Dinedor, HR2 6LQ Maintenance of Site Drainage

Corner Water CONSULTING

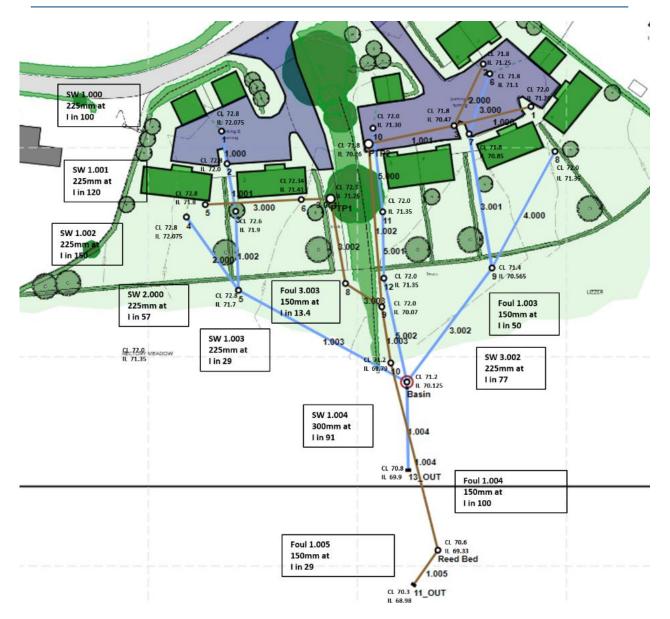


Figure 11: Foul and Storm Drainage Network Modelling

1.6. Maintenance

This section of the report should be read in conjunction with some of the other information submitted as part of the planning application. Namely "Surface Water Management Plan and Foul Drainage Strategy for Residential Development at Dinedor, Herefordshire" Contract Ref: L0337 dated March 2021 by Hydro-Logic Services which details maintenance of SuDS in section 3.5 and of foul drainage in sections 4.2 and 4.3.

The reed bed designers ARM Design Specification, which details maintenance in section 4.3.

Some of the drainage elements and assets will be shared between properties it will be necessary to ensure that all future owners of the dwellings cooperate and ensure that matters are dealt with as required. As such a legal opinion has been undertaken in respect of the form of the arrangement that

would be appropriate at this small development. The solicitor has dealt with a number of such sites and has concluded that the following is the most appropriate shared ownership/responsibility arrangement.

"Dudley Cleland will retain all the land to the south of the development boundary line, upon which the reed bed, storage basin and pipework shall be located. Dudley Cleland will be responsible for the maintenance and upkeep of this service media, subject to the plot owners contributing a fair proportion to such maintenance costs.

The pipe work from the development site to the dry basin plus the reed bed will be installed at a suitable depth to ensure the ongoing agricultural use of the land and fencing will be installed around the immediate vicinity of the reed bed and the dry basin.

The plot owners shall be jointly responsible for the maintenance and repair of the package treatment plants and drainage pipes falling within the development site".

No legal agreement has been drawn up at this time as this would not be appropriate until all planning matters have been concluded.

The owners of the fields surrounding the SuDS dry basin would be responsible for undertaking the management and maintenance of the basin. This requires simple but regular attention as detailed within Figure 12.

Maintenance schedule	Required action	Typical frequency
	Remove litter and debris	Monthly
	Cut grass – for spillways and access routes	Monthly (during growing season), or as required
	Cut grass – meadow grass in and around basin	Half yearly (spring – befor nesting season, and autu
	Manage other vegetation and remove nuisance plants	Monthly (at start, then as required)
	Inspect inlets, outlets and overflows for blockages, and clear if required.	Monthly
Regular maintenance	Inspect banksides, structures, pipework etc for evidence of physical damage	Monthly
	Inspect inlets and facility surface for silt accumulation. Establish appropriate silt removal frequencies.	Monthly (for first year), th annually or as required
	Check any penstocks and other mechanical devices	Annually
	Tidy all dead growth before start of growing season	Annually
	Remove sediment from inlets, outlet and forebay	Annually (or as required)
	Manage wetland plants in outlet pool – where provided	Annually (as set out in Chapter 23)
	Reseed areas of poor vegetation growth	As required
	Prune and trim any trees and remove cuttings	Every 2 years, or as requ
Occasional maintenance	Remove sediment from inlets, outlets, forebay and main basin when required	Every 5 years, or as required (likely to be min requirements where effe upstream source control provided)
	Repair erosion or other damage by reseeding or re-turfing	As required
Remedial actions	Realignment of rip-rap	As required
	Repair/rehabilitation of inlets, outlets and overflows	As required
	Relevel uneven surfaces and reinstate design levels	As required

Figure 12: Maintenance of Detention Basins

Foul Operation and Maintenance

The dwelling owners would be responsible for the management and maintenance of the shared foul drainage system serving the properties. The foul maintenance can be undertaken by competent local drainage contractors, who can undertake regular as well as any emergency maintenance.

The package treatment plant is to be a UK certified and approved unit. All foul drainage will be via gravity sewer designed and installed in accordance with the Building Regulations. Suitable tanker access is provided to allow occasional maintenance and is provided by the driveways and parking.

The PTP should be installed and maintained as per manufacturer instructions. It is recommended that a local qualified drainage contractor be employed to undertake regular plus any emergency maintenance.

The council with Balfour Beatty Living Places have prepared a checklist for a PTP. These should be followed in the final design and construction of the foul drainage apparatus.

To ensure the reliable long-term operation of the drainage network there will need to be maintenance arrangements put in place. The council produced a checklist to ensure that the key points are addressed. These key points are considered below (black text) – together with the mechanism by which these are addressed (blue text) which have already been agreed by the council on other multi house development sites.

1. How maintenance and eventual replacement of the package treatment plant will be funded.

Sinking fund or similar by the dwelling owners.

2. Please clarify which party will retrieve inorganic debris from the package treatment plant when this is discharged down the drains. The inorganic debris will need to be removed in a timely manner to ensure the continued operation of the plant.

The appointed and certified foul drainage maintenance contractor or contractors, or the dwelling owners.

3. Please clarify who will be responsible for communicating with new residents (e.g. new tenants) to advise them to dispose of inorganic debris using bins.

The detailed property handover detail pack will include details. Noting that this is not an unusual arrangement and occurs in many properties throughout the county. Appropriate signage will also be located within a property, e.g.

4. Which party will maintain the package treatment plant and which drains will be owned by respective property owners or third party. If a private management company is proposed, then the land on which the package treatment plant is built and the plant itself will need to be owned by all of the property owners. This policy is consistent with our SuDS guidance and will ensure continuity if the management company went into administration.

The dwellings are served by a PTP within the housing area and the responsibility for maintenance lies with the property owners. These owners can be supported by appointing a qualified foul drainage maintenance contractor.

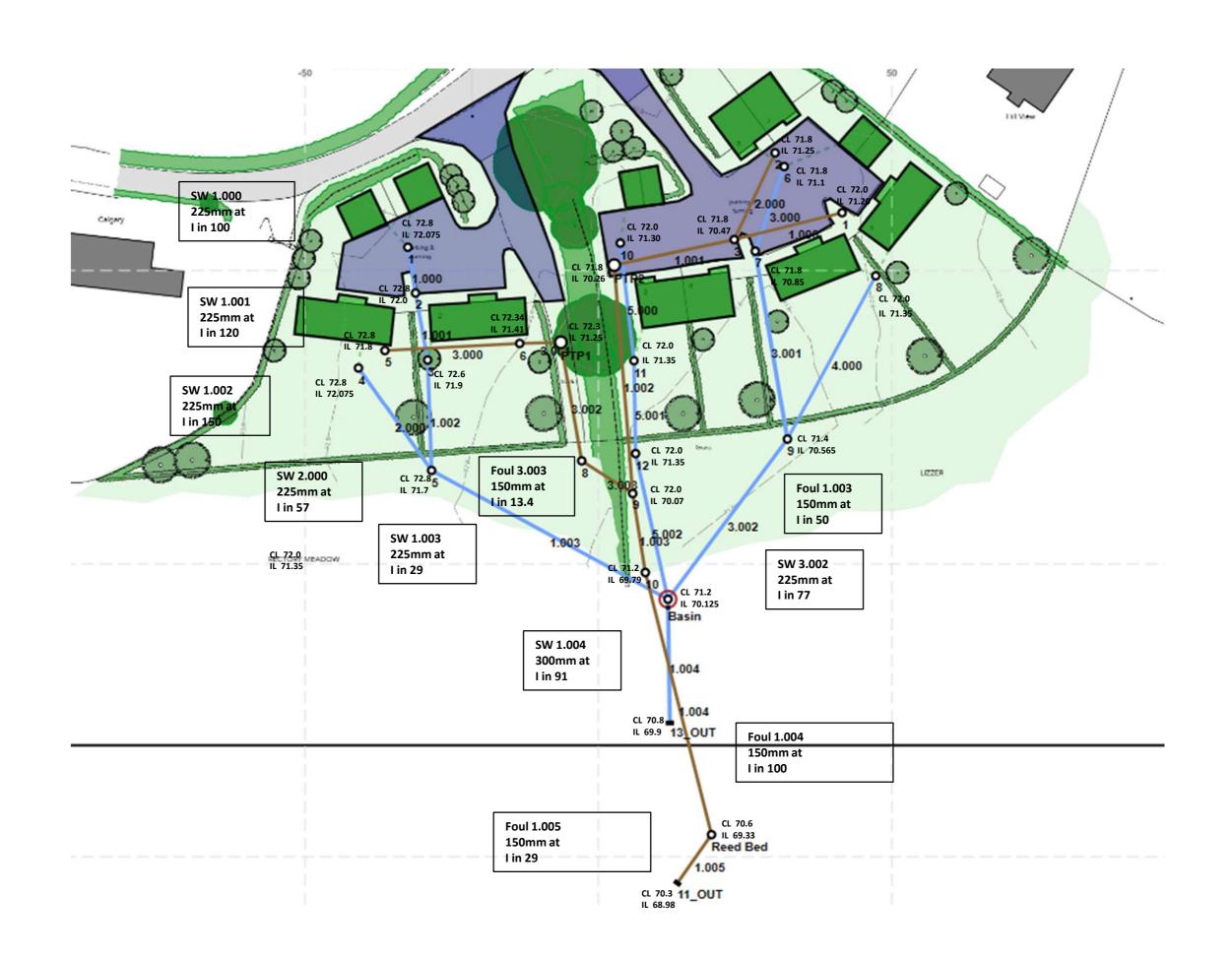
Dudley Cleland will retain all the land to the south of the development boundary line and will ensure maintenance of all elements located in this area.

5. In the event of electrical power failure, the Residual Current Device may isolate the package treatment plant. In this scenario pollution will occur. The RCD would need to be installed in a dry place, please confirm where. Please advise which party will be responsible for switching the package treatment plant on after an electrical power failure.

For a PTP the RCD will be in the local control panel. Any resetting would be by the appointed and certified foul drainage maintenance contractor or contractors, or the dwelling owners.

6. If a water company operated a remote pumping station, then they would install telemetry so that their maintenance team could respond to pump failure within 3 hours to mitigate the risk of pollution. As there will be multiple users, the residents will not be immediately accountable and so will rely on any management company to resolve a problem. A method will need to be developed to ensure that failure of the package treatment plant will be communicated to those who maintain it.

Not applicable as there is no pumping.


2. CONCLUSIONS

This Technical Note provides an updated drainage design for the site to take into account any changes made to UK Climate Change Policy or otherwise required by local or national policy since the planning application data plus design detail was prepared.

The design follows the planning approved layout plus adds some additional maintenance details.

APPENDIX 1 – REED BED DRAWINGS

APPENDIX 2 – SURFACE WATER DRAINAGE DESIGN REPORT & DRAWINGS

Design Settings

Rainfall Methodology	FEH-13	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	1.200
CV	0.750	Preferred Cover Depth (m)	0.500
Time of Entry (mins)	4.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	\checkmark
Maximum Rainfall (mm/hr)	200.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Width (mm)	Easting (m)	Northing (m)	Depth (m)
2			72.800	1200		-31.183	46.179	0.804
5			72.800	600		-28.445	15.927	1.101
12			72.000	600		6.324	18.802	1.018
9			71.400	1200		32.196	21.266	0.835
Basin			71.200	1200		11.836	-5.996	1.075
8	0.020	4.00	72.000	600		47.253	49.103	0.650
6	0.015	4.00	71.800	600		31.648	67.671	0.700
7	0.083	4.00	71.800	1200		26.720	53.297	0.952
10	0.004	4.00	72.000	600		3.723	54.666	0.700
11	0.013	4.00	72.000	600		6.050	34.681	0.834
1	0.067	4.00	72.800	1200		-32.493	53.962	0.725
4	0.011	4.00	72.800	600		-40.902	33.437	0.725
3	0.011	4.00	72.600	600		-29.107	34.800	0.700
13_OUT			70.800	400	1000	12.166	-27.048	0.900

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.001	2	3	11.567	0.600	71.996	71.900	0.096	120.0	225	4.26	176.7
1.003	5	Basin	45.860	0.600	71.699	70.125	1.574	29.1	225	4.87	176.7
5.002	12	Basin	25.403	0.600	70.982	70.125	0.857	29.6	225	4.73	176.7
3.002	9	Basin	34.026	0.600	70.565	70.125	0.440	77.3	225	4.96	176.7
4.000	8	9	31.648	0.600	71.350	70.640	0.710	44.6	150	4.35	176.7
3.000	6	7	15.195	0.600	71.100	70.948	0.152	100.0	200	4.21	176.7
3.001	7	9	32.496	0.600	70.848	70.565	0.283	114.8	300	4.58	176.7
5.000	10	11	20.120	0.600	71.300	71.166	0.134	150.0	200	4.34	176.7
5.001	11	12	15.881	0.600	71.166	71.007	0.159	100.0	200	4.56	176.7

Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth	DS Depth	Σ Area (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.001	1.192	47.4	32.0	0.579	0.475	0.067	0.0	136	1.278
1.003	2.433	96.7	42.4	0.876	0.850	0.088	0.0	104	2.355
5.002	2.412	95.9	8.1	0.793	0.850	0.017	0.0	44	1.472
3.002	1.488	59.2	56.2	0.610	0.850	0.117	0.0	175	1.685
4.000	1.511	26.7	9.3	0.500	0.610	0.020	0.0	61	1.379
3.000	1.211	38.1	7.1	0.500	0.652	0.015	0.0	58	0.930
3.001	1.466	103.6	46.8	0.652	0.535	0.098	0.0	142	1.431
5.000	0.987	31.0	2.0	0.500	0.634	0.004	0.0	35	0.561
5.001	1.211	38.1	8.1	0.634	0.793	0.017	0.0	62	0.963

Li	n	ks	

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)		T of C (mins)	Rain (mm/hr)
1.000	1	2	7.892	0.600	72.075	71.996	0.079	100.0	225	4.10	176.7
2.000	4	5	21.489	0.600	72.075	71.699	0.376	57.2	225	4.21	176.7
1.002	3	5	18.885	0.600	71.900	71.774	0.126	150.0	225	4.56	176.7
1.004	Basin	13_OUT	20.398	0.600	70.125	69.900	0.225	90.7	300	5.17	173.0

Name	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	1.307	52.0	32.0	0.500	0.579	0.067	0.0	128	1.373
2.000	1.733	68.9	5.3	0.500	0.876	0.011	0.0	42	1.031
1.002	1.065	42.3	37.1	0.475	0.801	0.077	0.0	164	1.197
1.004	1.652	116.7	104.4	0.775	0.600	0.223	0.0	222	1.858

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.001	11.567	120.0	225	Circular	72.800	71.996	0.579	72.600	71.900	0.475
1.003	45.860	29.1	225	Circular	72.800	71.699	0.876	71.200	70.125	0.850
5.002	25.403	29.6	225	Circular	72.000	70.982	0.793	71.200	70.125	0.850
3.002	34.026	77.3	225	Circular	71.400	70.565	0.610	71.200	70.125	0.850
4.000	31.648	44.6	150	Circular	72.000	71.350	0.500	71.400	70.640	0.610
3.000	15.195	100.0	200	Circular	71.800	71.100	0.500	71.800	70.948	0.652
3.001	32.496	114.8	300	Circular	71.800	70.848	0.652	71.400	70.565	0.535
5.000	20.120	150.0	200	Circular	72.000	71.300	0.500	72.000	71.166	0.634
5.001	15.881	100.0	200	Circular	72.000	71.166	0.634	72.000	71.007	0.793
1.000	7.892	100.0	225	Circular	72.800	72.075	0.500	72.800	71.996	0.579
2.000	21.489	57.2	225	Circular	72.800	72.075	0.500	72.800	71.699	0.876
1.002	18.885	150.0	225	Circular	72.600	71.900	0.475	72.800	71.774	0.801
1.004	20.398	90.7	300	Circular	71.200	70.125	0.775	70.800	69.900	0.600

Link	US Node	Dia (mm)	Node Type	МН Туре	DS Node	Dia (mm)	Width (mm)	Node Type	МН Туре
1.001	2	1200	Manhole	Adoptable	3	600		Manhole	Adoptable
1.003	5	600	Manhole	Adoptable	Basin	1200		Manhole	Adoptable
5.002	12	600	Manhole	Adoptable	Basin	1200		Manhole	Adoptable
3.002	9	1200	Manhole	Adoptable	Basin	1200		Manhole	Adoptable
4.000	8	600	Manhole	Adoptable	9	1200		Manhole	Adoptable
3.000	6	600	Manhole	Adoptable	7	1200		Manhole	Adoptable
3.001	7	1200	Manhole	Adoptable	9	1200		Manhole	Adoptable
5.000	10	600	Manhole	Adoptable	11	600		Manhole	Adoptable
5.001	11	600	Manhole	Adoptable	12	600		Manhole	Adoptable
1.000	1	1200	Manhole	Adoptable	2	1200		Manhole	Adoptable
2.000	4	600	Manhole	Adoptable	5	600		Manhole	Adoptable
1.002	3	600	Manhole	Adoptable	5	600		Manhole	Adoptable
1.004	Basin	1200	Manhole	Adoptable	13_0UT	400	1000	Manhole	Headwall

Manhole Schedule

Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Connections	Link	IL (m)	Dia (mm)
2	-31.183	46.179	72.800	0.804	1200			1.000	71.996	225
							÷ 0	1.001	71.996	225
5	-28.445	15.927	72.800	1.101	600		1 2 1		71.699	225
							2	1.002	71.774	225
							0	1.003	71.699	225
12	6.324	18.802	72.000	1.018	600			5.001	71.007	200
							° 0	5.002	70.982	225
9	32.196	21.266	71.400	0.835	1200		² 1 1	4.000	70.640	150
							2	3.001	70.565	300
							° 0		70.565	225
Basin	11.836	-5.996	71.200	1.075	1200		1 2 1		70.125	225
							3		70.125	225
							3		70.125 70.125	225
8	47.253	49.103	72.000	0.650	600		<u> 0 0</u>	1.004	70.125	300
							\mathcal{P}		74.050	450
<u> </u>	21 C 4 0	C7 C71	71.000	0 700	<u> </u>		° 0	4.000	71.350	150
6	31.648	67.671	71.800	0.700	600		\mathcal{P}		74.400	200
7	26 720	F2 207	71.000	0.050	1200		o ^r 0		71.100	200
/	26.720	53.297	71.800	0.952	1200				70.948	200
							<u> </u>	3.001	70.848	300
10	3.723	54.666	72.000	0.700	600		φ			
							• 0		71.300	200
11	6.050	34.681	72.000	0.834	600			5.000	71.166	200
							° 0	5.001	71.166	200
1	-32.493	53.962	72.800	0.725	1200		φ			
							0 V	1.000	72.075	225
4	-40.902	33.437	72.800	0.725	600		Q			
							<u> </u>		72.075	225
3	-29.107	34.800	72.600	0.700	600			1.001	71.900	225
							₩ 0	1.002	71.900	225

NodeEastingNorthingCLDepthDiaWidthConnectionsLinkLinkL13_OUT12.166-27.04870.8000.900400100011.00469.90013_OUT12.166-27.04870.8000.900400100011.00469.900Brainfall MethodologyFEH-13 Summer CVDrain Down Time (mins)3600 Additional Storage (m?h)3600 Additional Storage (m?h)360 Additional Storag	
(m) (m) (m) (mm) (mm) (mm) 13_OUT 12.166 -27.048 70.800 0.900 400 1000 1 1.004 69.900 Simulation Settings Rainfall Methodology FEH-13 Drain Down Time (mins) 3600 Minter CV 0.840 Additional Storage (m³/ha) 20.0 Winter CV 0.840 Additional Storage (m³/ha) 20.0 Check Discharge Rate(s) x Check Discharge Volume × 15 30 60 120 180 240 360 480 Return Period Climate Change Additional Area Additional Flow (years) (CC %) (A %) (Q %) 0 0 100 45 10 0 0 0 0 Site Makeup Greenfield Return Period (years) 100 100 45 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<	
13_OUT 12.166 -27.048 70.800 0.900 400 1000 1 1 1.004 69.900 Simulation Settings Rainfall Methodology FEH-13 Summer CV 0.750 Winter CV Drain Down Time (mins) 3600 Additional Storage (m³/ha) 20.0 Check Discharge Nate(s) x Analysis Speed Normal Skip Steady State x 100 year 45% 360 480 Storm Durations 15 30 60 120 180 240 360 480 Return Period Climate Change Additional Area Additional Flow (years) Q 0 0 2 0 0 0 0 0 0 0 100 45 10 0 0 0 0 0 0 100 45 10 0	Dia (mm)
Rainfall Methodology Summer CVFEH-13 0.750 Winter CVDrain Down Time (mins)3600 Additional Storage (m³/ha)Malysis Speed Skip Steady State Stip Steady StateNormal xCheck Discharge Rate(s) xx153060120180240360480Storm Durations153060120180240360480Return Period (years)20003040000100451001004510010045100100220002000010045100100451001005100100510010065101009130.00083	300
Summer CV0.750 Winter CVAdditional Storage (m³/ha)20.0 Check Discharge Rate(s)Malysis SpeedNormal Skip Steady StateNormal XCheck Discharge Volume✓Skip Steady Statex100 year +45% 360 minute (m³)83153060120180240360480Return PeriodClimate Change (CC %)Additional Area (A %)Additional Flow (Q %)200030400010045100Site Makeup Greenfield Greenfield MethodFSR/FEH FSR/FEHPositively Drained Area (ha)0.230 Soil IndexReturn Period (years)100 Limate Change (%)Soli Index2Betterment (%)0SPR0.30 CWiPR0.386 Runoff Volume (m³)Node Basin Online Hydro-Brake* ControlNode Basin Online Hydro-Brake* Control	
153060120180240360480Return Period (years)Climate Change (CC %)Additional Area (A %)Additional Flow (Q %)200030400010045100Pre-development Discharge VolumeSite Makeup Greenfield MethodFSR/FEH Positively Drained Area (ha)Return Period (years)100Soil Index2000Soil Index200SPR0.30PR0.386 Runoff Volume (m³)83Hote Basin Uniter Hydro-Brake® Control	
(years) (CC %) (A %) (Q %) 2 0 0 0 30 40 0 0 100 45 10 0 Pre-development Discharge Volume Site Makeup Greenfield Return Period (years) 100 Greenfield Method FSR/FEH Climate Change (%) 45 Positively Drained Area (ha) 0.230 Storm Duration (mins) 360 Soil Index 2 Betterment (%) 0 PR 0.386 CWI 130.000 Runoff Volume (m³) 83	
200030400010045100Pre-development Discharge VolumeSite MakeupGreenfield FSR/FEHReturn Period (years)100Greenfield MethodFSR/FEHClimate Change (%)45Positively Drained Area (ha)0.230Storm Duration (mins)360Soil Index2Betterment (%)0SPR0.30PR0.386CWI130.000Runoff Volume (m³)83Node Basin Online Hydro-Brake® Control	
10045100Pre-development Discharge VolumeSite Makeup Greenfield MethodGreenfieldReturn Period (years)100 Climate Change (%)Greenfield Method Positively Drained Area (ha)0.230Storm Duration (mins)360 Betterment (%)Soil Index SPR0.30PR0.386 CWI130.000Runoff Volume (m³)83Hote Basic Diline Hydro-Brake® Control	
Site MakeupGreenfieldReturn Period (years)100Greenfield MethodFSR/FEHClimate Change (%)45Positively Drained Area (ha)0.230Storm Duration (mins)360Soil Index2Betterment (%)0SPR0.30PR0.386CWI130.000Runoff Volume (m³)83Node Basin Online Hydro-Brake® Control	
Greenfield MethodFSR/FEHClimate Change (%)45Positively Drained Area (ha)0.230Storm Duration (mins)360Soil Index2Betterment (%)0SPR0.30PR0.386CWI130.000Runoff Volume (m³)83Node Basin Online Hydro-Brake® Control	
Flap Valve✓Objective(HE) Minimise upstream storageReplaces Downstream Link✓Sump Available✓Invert Level (m)70.125Product NumberCTL-SHE-0075-2000-0500-2000Design Depth (m)0.500Min Outlet Diameter (m)0.100Design Flow (I/s)2.0Min Node Diameter (mm)1200	-
Node Basin Depth/Area Storage Structure	
Base Inf Coefficient (m/hr)0.00000Safety Factor2.0Invert Level (m)70.2Side Inf Coefficient (m/hr)0.00000Porosity1.00Time to half empty (mins)0	30
DepthAreaInf AreaDepthAreaInf Area(m)(m²)(m²)(m²)(m²)0.000400.0400.00.970632.9450.0	

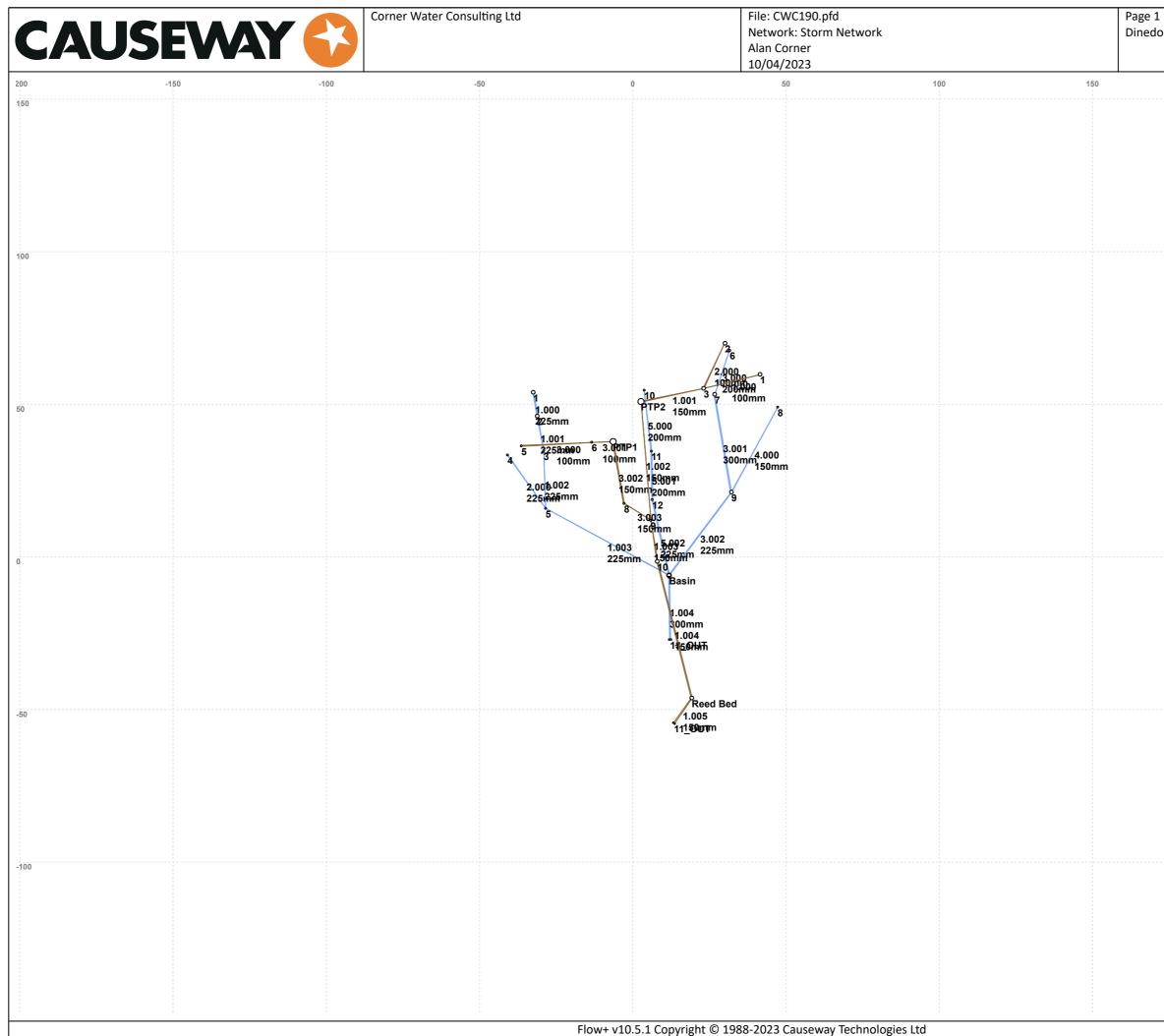
|--|

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	2	10	72.066	0.070	8.9	0.0788	0.0000	ОК
15 minute winter	5	11	71.751	0.052	11.6	0.0148	0.0000	ОК
15 minute winter	12	10	71.005	0.023	2.2	0.0066	0.0000	ОК
15 minute winter	9	10	70.643	0.078	15.6	0.0879	0.0000	ОК
180 minute winter	Basin	140	70.268	0.143	7.9	15.9023	0.0000	ОК
15 minute winter	8	10	71.382	0.032	2.6	0.0281	0.0000	ОК
15 minute winter	6	10	71.132	0.032	2.0	0.0223	0.0000	ОК
15 minute summer	7	10	70.920	0.072	13.0	0.2078	0.0000	ОК
15 minute winter	10	10	71.319	0.019	0.6	0.0077	0.0000	ОК
15 minute winter	11	10	71.199	0.033	2.3	0.0196	0.0000	ОК
15 minute summer	1	10	72.143	0.068	8.9	0.2011	0.0000	ОК
15 minute winter	4	10	72.098	0.023	1.5	0.0135	0.0000	ОК
15 minute winter	3	10	71.978	0.078	10.3	0.0457	0.0000	ОК
15 minute summer	13_OUT	1	69.900	0.000	2.0	0.0000	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	2	1.001	3	8.9	0.788	0.188	0.1307	
15 minute winter	5	1.003	Basin	11.5	0.864	0.119	0.6397	
15 minute winter	12	5.002	Basin	2.2	0.214	0.023	0.3054	
15 minute winter	9	3.002	Basin	15.3	0.960	0.259	0.5553	
180 minute winter	Basin	Hydro-Brake [®]	13_0UT	2.0				34.1
15 minute winter	8	4.000	9	2.6	0.954	0.097	0.0855	
15 minute winter	6	3.000	7	2.0	0.638	0.052	0.0475	
15 minute summer	7	3.001	9	13.0	0.951	0.126	0.4459	
15 minute winter	10	5.000	11	0.6	0.244	0.019	0.0498	
15 minute winter	11	5.001	12	2.2	0.658	0.058	0.0536	
15 minute summer	1	1.000	2	8.9	0.870	0.171	0.0807	
15 minute winter	4	2.000	5	1.5	0.459	0.022	0.0970	
15 minute winter	3	1.002	5	10.1	0.861	0.240	0.2228	

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 99.22%

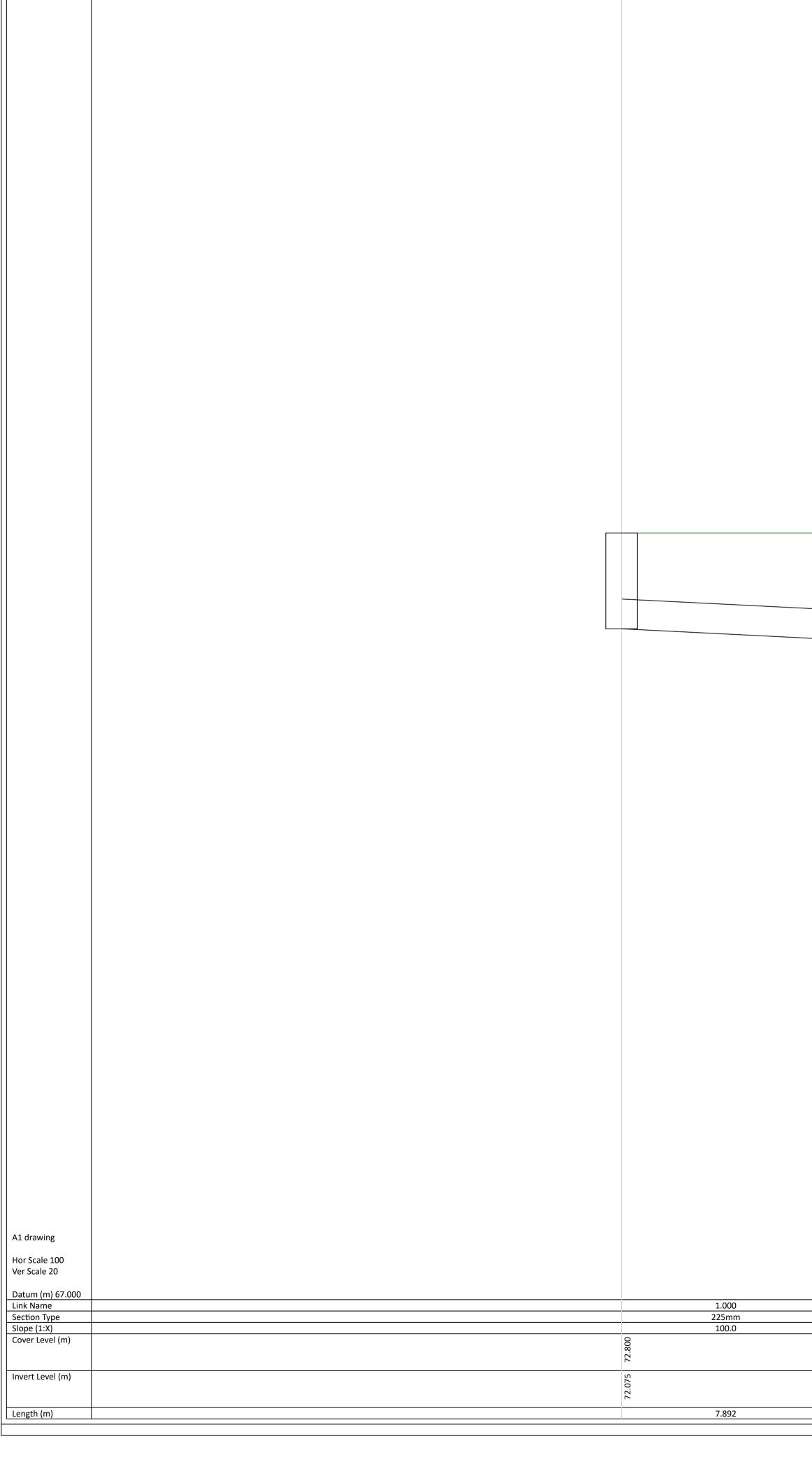
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	2	10	72.166	0.170	34.8	0.1920	0.0000	ОК
15 minute winter	5	10	71.807	0.108	45.7	0.0305	0.0000	ОК
15 minute winter	12	10	71.028	0.046	8.8	0.0129	0.0000	ОК
15 minute winter	9	10	70.772	0.207	61.9	0.2341	0.0000	ОК
240 minute winter	Basin	236	70.439	0.314	20.7	89.2837	0.0000	SURCHARGED
15 minute winter	8	10	71.414	0.064	10.2	0.0567	0.0000	ОК
15 minute summer	6	10	71.164	0.064	7.8	0.0450	0.0000	ОК
15 minute summer	7	10	71.003	0.155	51.1	0.4457	0.0000	ОК
15 minute winter	10	10	71.336	0.036	2.2	0.0145	0.0000	ОК
15 minute winter	11	10	71.234	0.068	8.8	0.0398	0.0000	ОК
15 minute winter	1	10	72.239	0.164	34.9	0.4883	0.0000	ОК
15 minute winter	4	10	72.119	0.044	5.8	0.0258	0.0000	ОК
15 minute winter	3	10	72.090	0.190	40.3	0.1118	0.0000	ОК
15 minute summer	13_0UT	1	69.900	0.000	2.0	0.0000	0.0000	ОК


Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	2	1.001	3	34.7	1.030	0.732	0.3933	
15 minute winter	5	1.003	Basin	45.2	1.900	0.468	1.1701	
15 minute winter	12	5.002	Basin	8.7	0.529	0.091	0.5166	
15 minute winter	9	3.002	Basin	59.7	1.756	1.010	1.1860	
240 minute winter	Basin	Hydro-Brake [®]	13_0UT	2.0				118.3
15 minute winter	8	4.000	9	10.2	1.175	0.382	0.3737	
15 minute summer	6	3.000	7	7.8	0.935	0.205	0.1268	
15 minute summer	7	3.001	9	51.7	1.212	0.499	1.4380	
15 minute winter	10	5.000	11	2.2	0.341	0.071	0.1324	
15 minute winter	11	5.001	12	8.8	0.965	0.230	0.1441	
15 minute winter	1	1.000	2	34.8	1.114	0.670	0.2493	
15 minute winter	4	2.000	5	5.8	0.603	0.084	0.2598	
15 minute winter	3	1.002	5	39.9	1.178	0.942	0.6378	

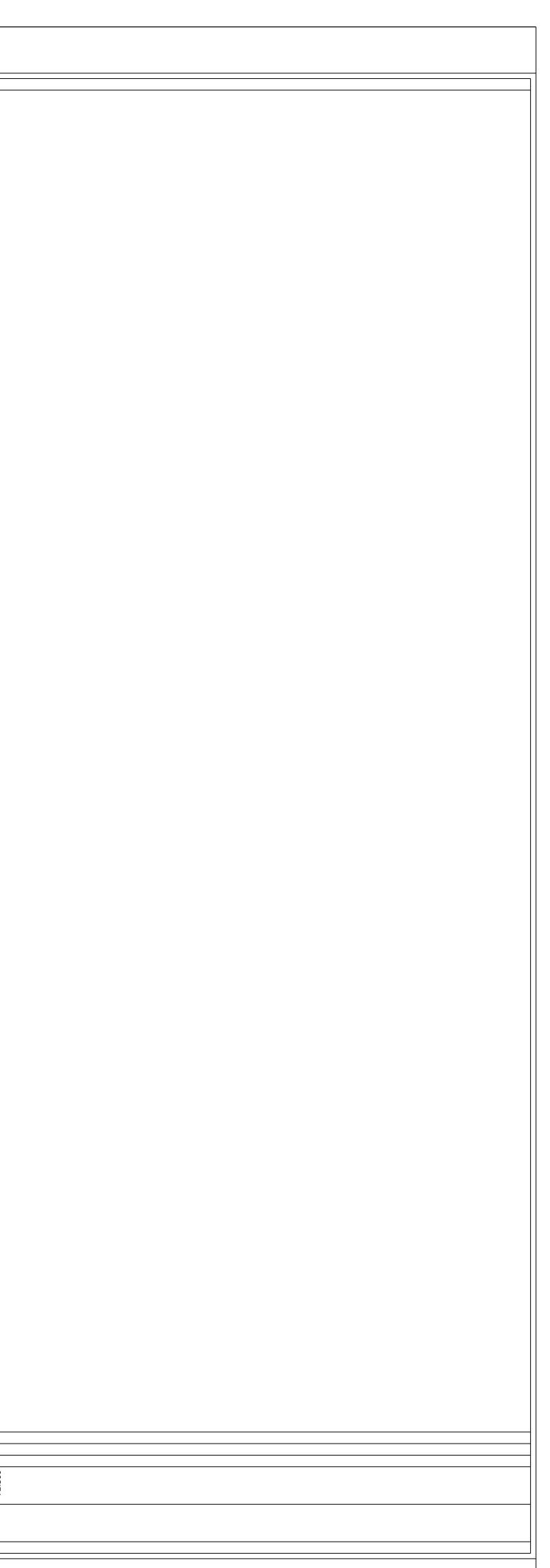
Results for 100 year +45% CC +10% A Critical Storm Duration. Lowest mass balance: 99.22%

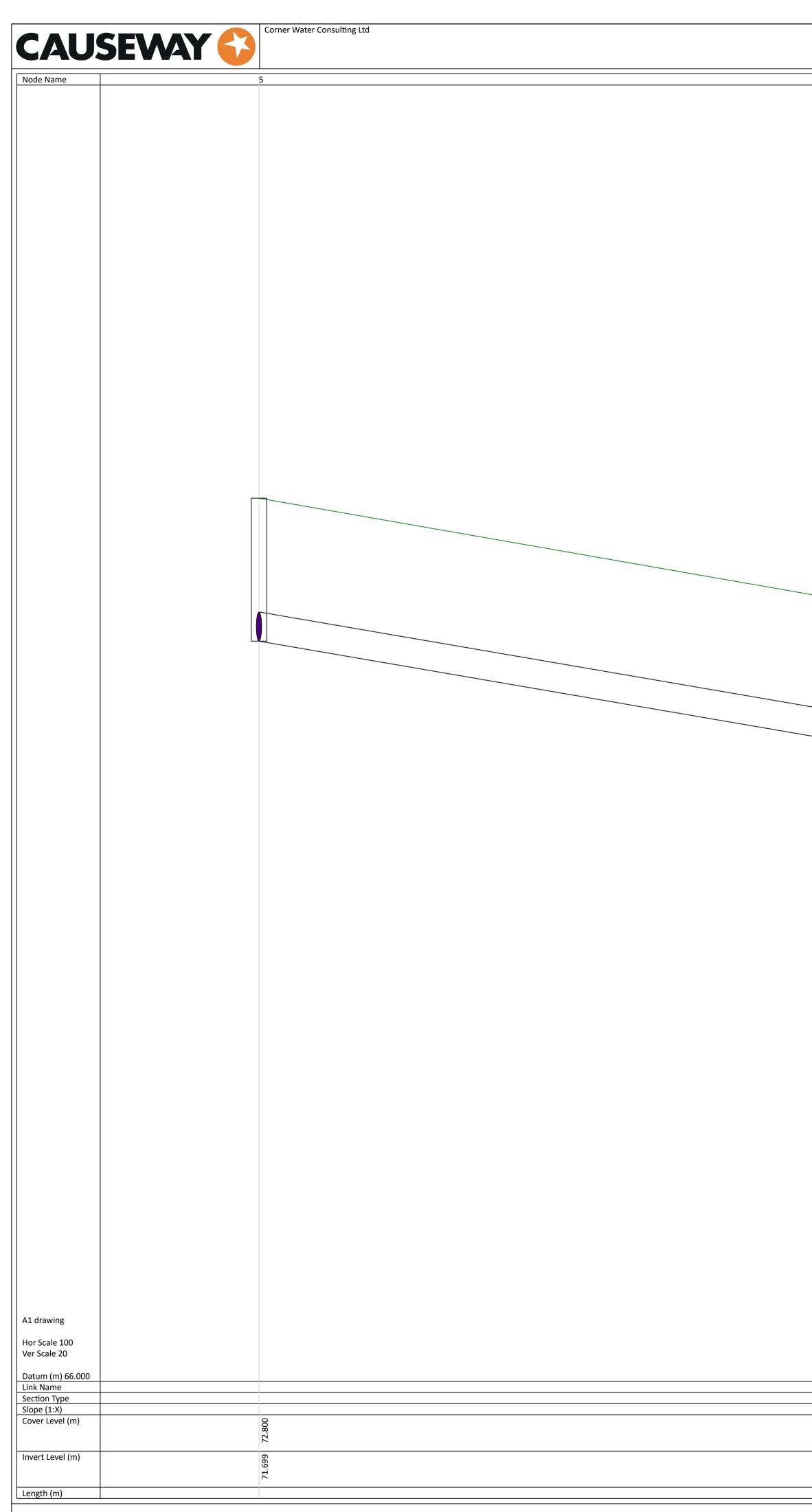
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winter	2	11	72.411	0.415	50.8	0.4693	0.0000	SURCHARGED
15 minute winter	5	11	71.836	0.137	66.5	0.0387	0.0000	OK
15 minute winter	12	10	71.040	0.058	13.9	0.0163	0.0000	OK
15 minute winter	9	11	71.237	0.672	81.8	0.7604	0.0000	FLOOD RISK
240 minute winter	Basin	240	70.570	0.445	31.7	150.7326	0.0000	SURCHARGED
15 minute winter	8	11	71.444	0.094	16.0	0.0889	0.0000	ОК
15 minute winter	6	11	71.398	0.298	12.2	0.2231	0.0000	SURCHARGED
15 minute winter	7	11	71.390	0.542	80.7	1.6521	0.0000	SURCHARGED
15 minute winter	10	10	71.345	0.045	3.5	0.0187	0.0000	ОК
15 minute winter	11	10	71.254	0.088	13.9	0.0542	0.0000	ОК
15 minute winter	1	11	72.525	0.450	54.8	1.4220	0.0000	FLOOD RISK
15 minute summer	4	10	72.130	0.055	9.1	0.0340	0.0000	ОК
15 minute winter	3	11	72.257	0.357	58.3	0.2201	0.0000	SURCHARGED
15 minute summer	13_0UT	1	69.900	0.000	2.0	0.0000	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	2	1.001	3	50.5	1.269	1.064	0.4600	
15 minute winter	5	1.003	Basin	66.9	2.226	0.692	1.4444	
15 minute winter	12	5.002	Basin	13.8	0.688	0.144	0.5857	
15 minute winter	9	3.002	Basin	81.1	2.043	1.371	1.3533	
240 minute winter	Basin	Hydro-Brake [®]	13_0UT	2.0				180.8
15 minute winter	8	4.000	9	15.6	1.190	0.586	0.4629	
15 minute winter	6	3.000	7	12.6	0.892	0.331	0.4756	
15 minute winter	7	3.001	9	67.9	1.231	0.655	2.2883	
15 minute winter	10	5.000	11	3.5	0.384	0.113	0.1863	
15 minute winter	11	5.001	12	13.9	1.087	0.364	0.2027	
15 minute winter	1	1.000	2	50.8	1.279	0.978	0.3139	
15 minute summer	4	2.000	5	9.1	0.668	0.132	0.3453	
15 minute winter	3	1.002	5	58.5	1.474	1.382	0.7259	



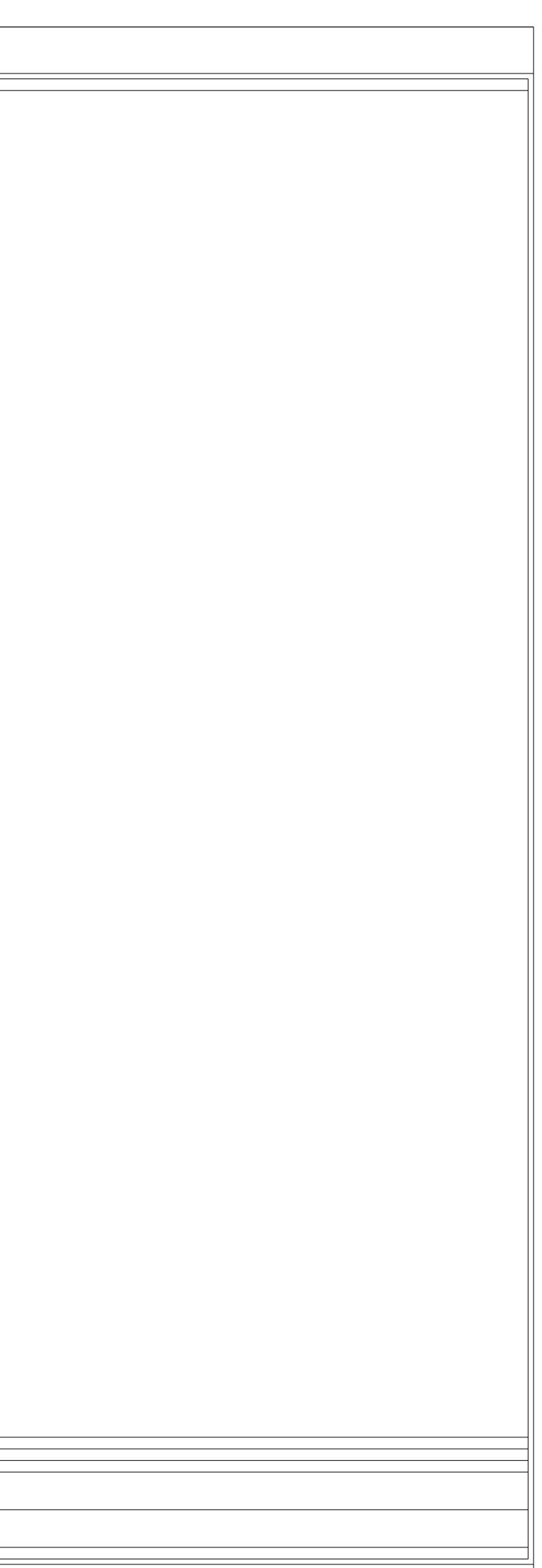
Page 1 Dinedor SWMP


20	0	250



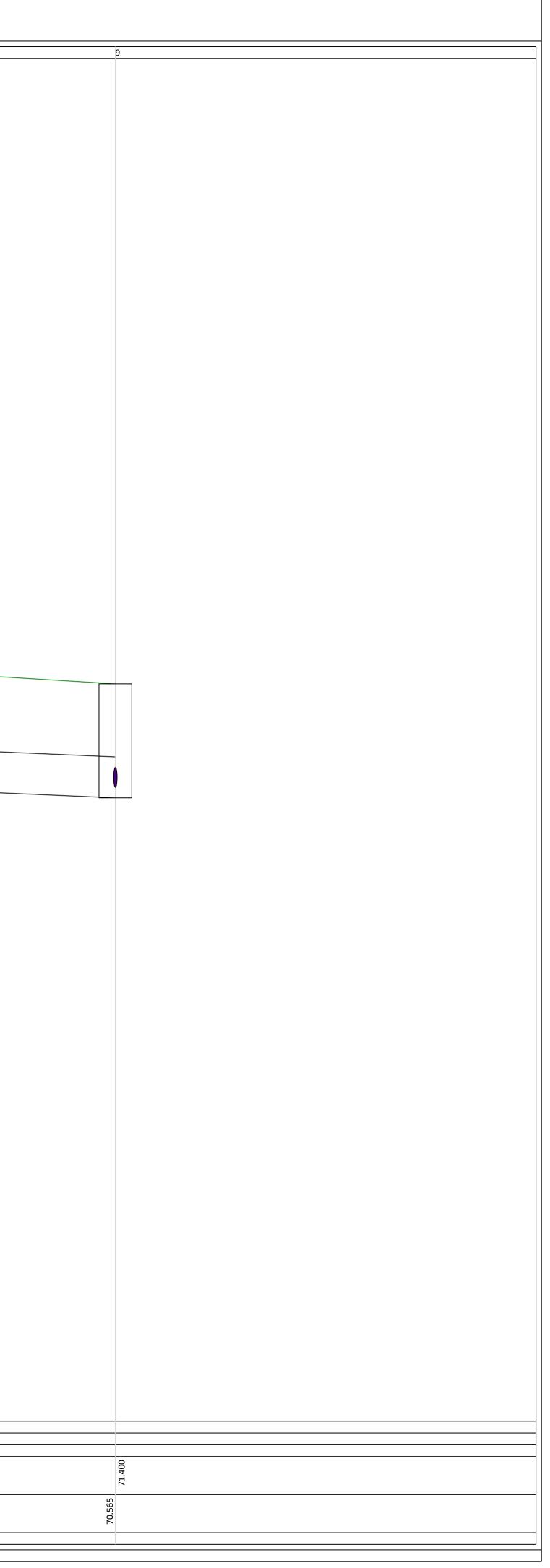
Node Name

		File: CWC190.pfd Network: Storm Network Alan Corner		Page 1 Dinedor SWMP	
	2	10/04/2023	3	<u> </u> 5	;
					_
	8	1.001 225mm 120.0	1.002 225mm 150.0 8		
71.996	996 72.800		72.600	71.774	77 800
71.5	71.	11.567 Flow+ v10.5.1 Copyright © 1988-2023 Causew	18.885	71.7	_
		LOW ATOUR CODALE TOOL AND TARE AND	-/		

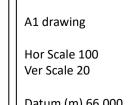

	File: CWC190.pfd Network: Storm Network Alan Corner		Page 2 Dinedor SWMP
	10/04/2023	Basin	
1.003 225mm			
225mm 29.1		00	
		5 71.200	
	70.125	70.125	
45.860	Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd		

	12.01/2
	13_OUT
	1
1.004 300mm	
300mm 90.7	
	70.800
20.398	

CAUSEVAY Corner Water Consulting Ltd	File: CWC190.pfd Network: Storm Network Alan Corner 10/04/2023	Page 3 Dinedor SWMP
Node Name	4	5
A1 drawing		
Hor Scale 100 Ver Scale 20		
Datum (m) 67.000 Link Name Section Type Slope (1:X)	2.000 225mm 57.2	
Cover Level (m)	27.800	72.800
Invert Level (m)	72.075	71.699
Length (m)	21.489 Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd	

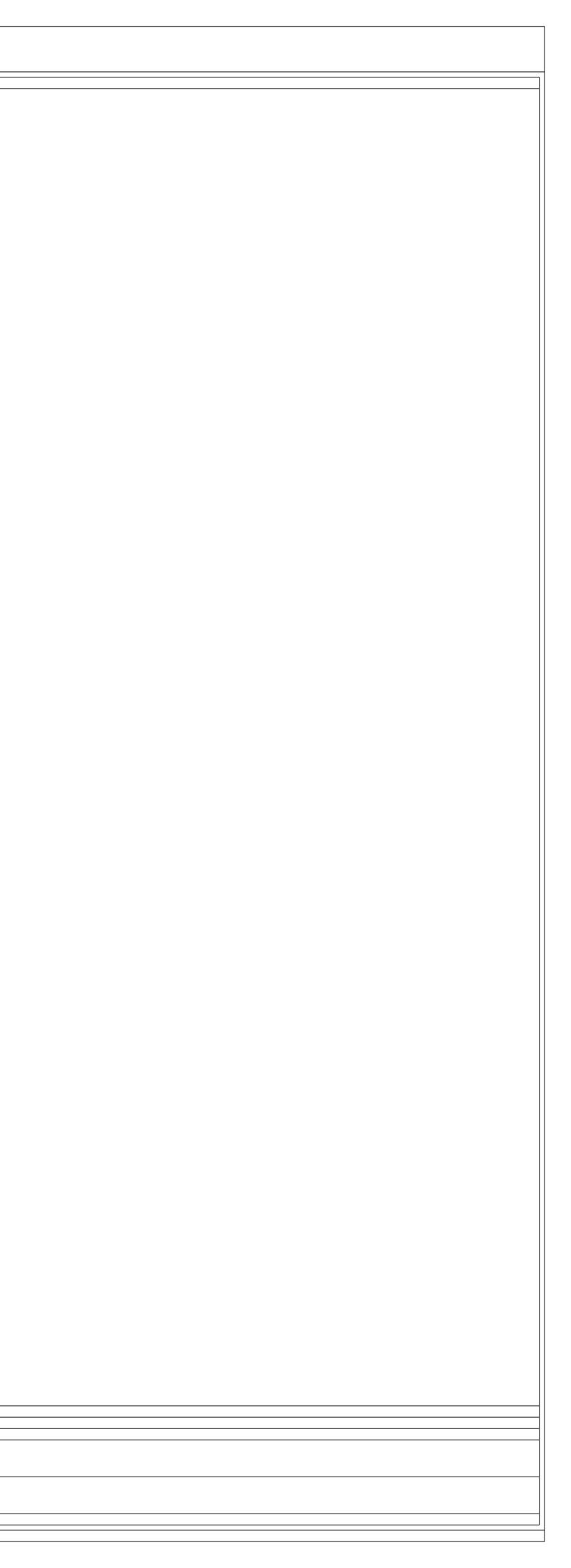


Node Name	
Node Name	
	Γ


A1 drawing			
Hor Scale 100			
Ver Scale 20			
Datum (m) 66.000			
Link Name			3.000
Section Type			200mm
Slope (1:X)			100.0
Cover Level (m)		71.800	
Invert Level (m)		100	
		71.100	
Length (m)			15.195

	File: CWC190.pfd Network: Storm Network Alan Corner	Page 4 Dinedor SWMP
	10/04/2023 7	
	3.001 300mm	
	114.8 008 12	
8 1		
70.9	20.07 848 86	
	32.496 Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd	

Node Name

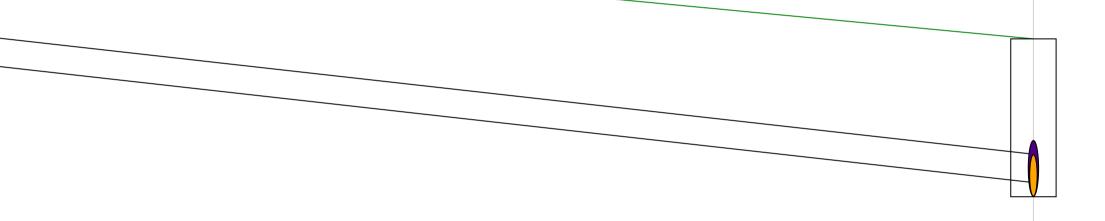

Ver Scale 20		
Datum (m) 66.000		
Link Name		
Section Type		
Slope (1:X)		
Cover Level (m)		71.400
Invert Level (m)		70.565
Length (m)		

File: CWC190.pfd	Page 5
Network: Storm Network	Dinedor SWMP
Alan Corner	
10/04/2023	

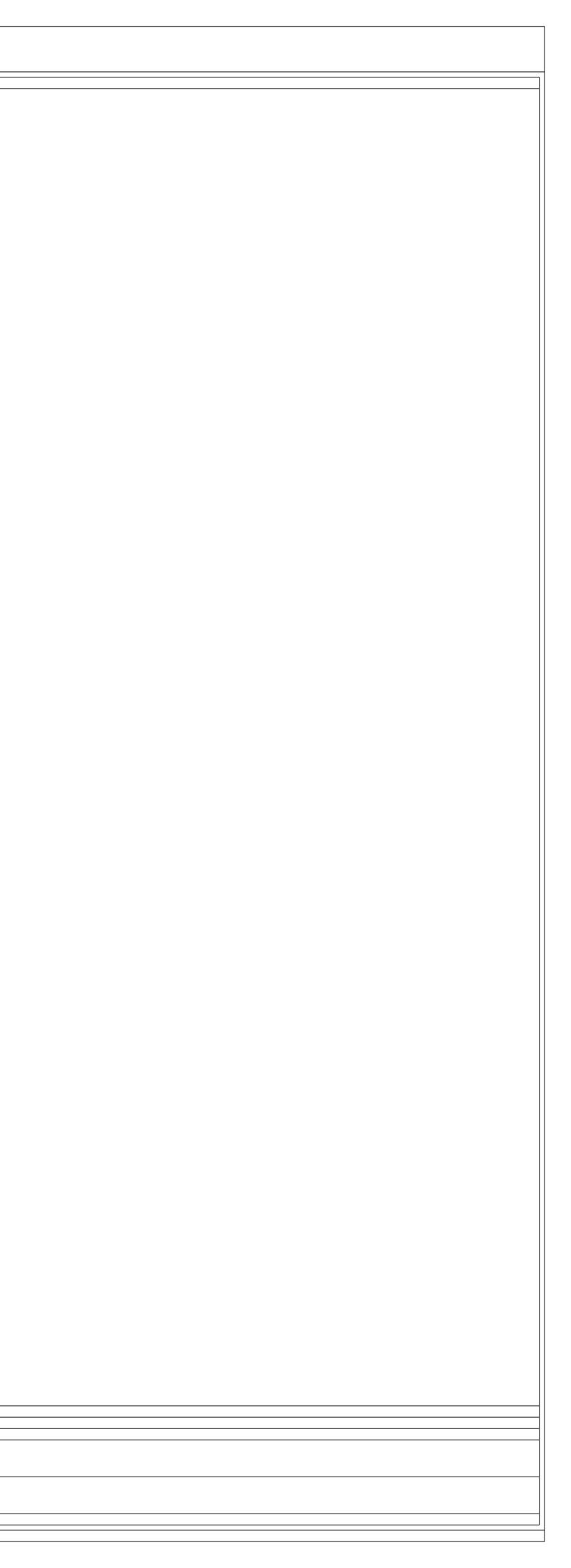
Basin

34.026
Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd

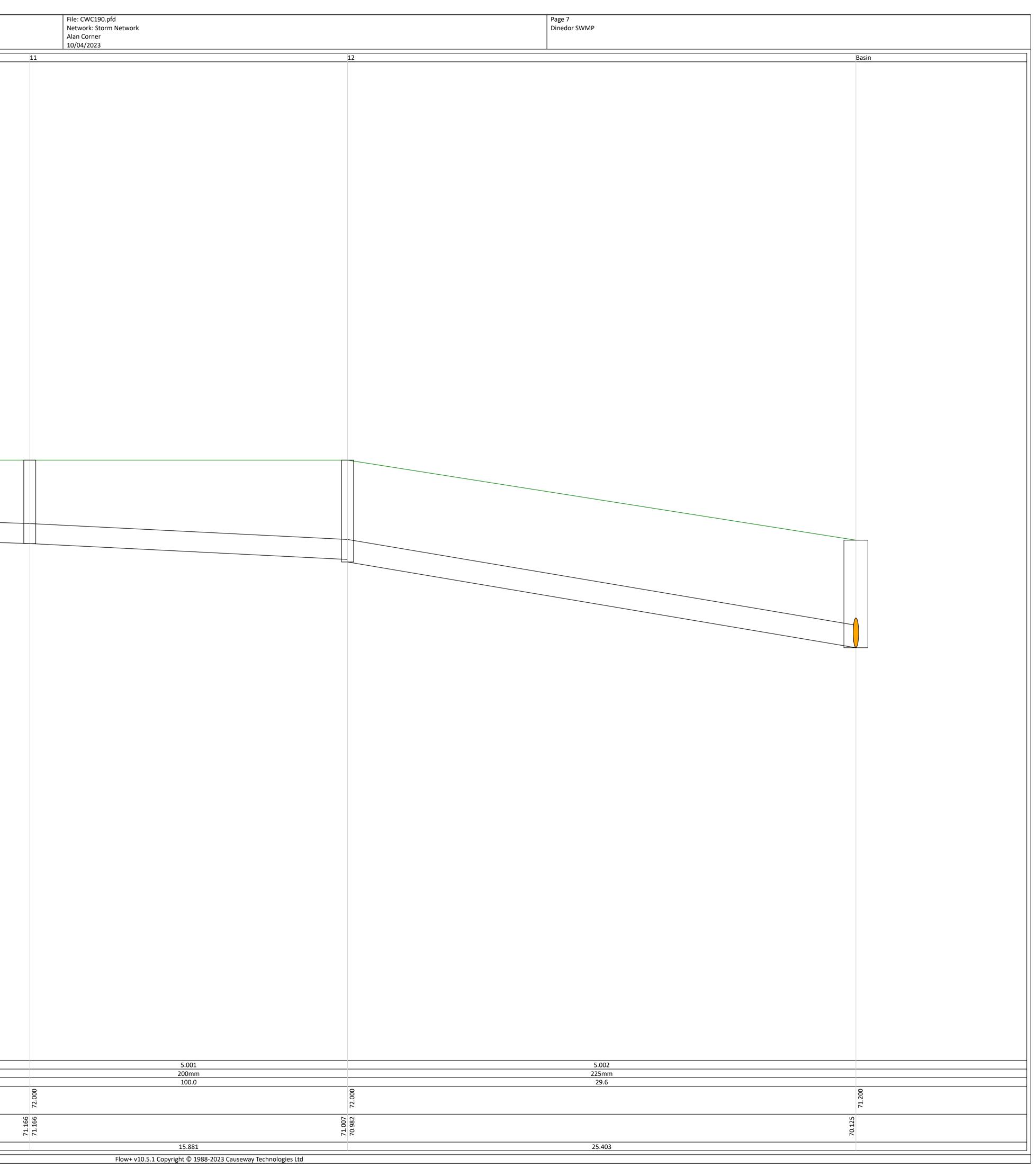
3.002 225mm 77.3



Node Name



Ver Scale 20 Datum (m) 66.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Length (m)


File: CWC190.pfd	Page 6
Network: Storm Network	Dinedor SWMP
Alan Corner	
10/04/2023	
	0

4.000	
150mm	
44.6	
	71.400
70.640	
31.648	

	SEVAY			
Node Name		10		
A1 drawing				
Hor Scale 100 Ver Scale 20				
Datum (m) 66.000 Link Name Section Type			5.000 200mm	
Slope (1:X) Cover Level (m)		72.000	150.0	
Invert Level (m)		71.300		
Length (m)			20.120	

APPENDIX 3 – FOUL DRAINAGE DESIGN REPORT & DRAWINGS

Design Settings

Frequency of use (kDU)	0.50	Minimum Velocity (m/s)	1.00
Flow per dwelling per day (I/day)	4000	Connection Type	Level Soffits
Domestic Flow (l/s/ha)	0.0	Minimum Backdrop Height (m)	2.000
Industrial Flow (I/s/ha)	0.0	Preferred Cover Depth (m)	0.450
Additional Flow (%)	0	Include Intermediate Ground	\checkmark

<u>Nodes</u>

Name	Dwellings	Cover Level (m)	Manhole Type	Width (mm)	Easting (m)	Northing (m)	Depth (m)
5	1	72.800	Adoptable		-36.394	36.408	1.000
6	1	72.340	Adoptable		-13.426	37.613	0.923
PTP1		72.300	Adoptable		-6.416	37.811	1.050
8		72.200	Adoptable		-2.862	17.561	1.361
10		71.200	Adoptable		7.984	-1.448	1.406
Reed Bed		70.600	Adoptable		19.259	-46.191	1.267
11_OUT		70.300	Headwall	900	13.705	-54.459	1.313
2	2	71.800	Adoptable		30.096	70.006	0.550
3	1	71.800	Adoptable		23.126	55.262	1.329
9		72.000	Adoptable		5.835	11.996	1.934
1	1	72.000	Adoptable		41.521	59.837	0.800
PTP2		71.800	Adoptable		2.676	51.122	1.538

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)
3.000	5	6	23.000	1.500	71.800	71.417	0.383	60.0	100
3.001	6	PTP1	7.013	1.500	71.417	71.300	0.117	60.0	100
3.002	PTP1	8	20.560	1.500	71.250	70.839	0.411	50.0	150
3.003	8	9	10.325	1.500	70.839	70.066	0.773	13.4	150
1.004	10	Reed Bed	46.142	1.500	69.794	69.333	0.461	100.0	150
1.005	Reed Bed	11_0UT	9.960	1.500	69.333	68.987	0.346	28.8	150
2.000	2	3	16.308	1.500	71.250	70.521	0.729	22.4	100
1.001	3	PTP2	20.865	1.500	70.471	70.262	0.209	100.0	150
1.002	PTP2	9	39.253	1.500	70.262	70.066	0.196	200.0	150
1.003	9	10	13.615	1.500	70.066	69.794	0.272	50.0	150
1.000	1	3	18.955	1.500	71.200	70.521	0.679	27.9	100

Name	Pro Vel @ 1/3 Q	Vel (m/s)	Cap (I/s)	Flow (l/s)	US Depth	DS Depth	Σ Area (ha)	Σ Dwellings (ha)	Σ Units (ha)	Σ Add Inflow	Pro Depth	Pro Velocity
	(m/s)				(m)	(m)				(ha)	(mm)	(m/s)
3.000	0.144	0.860	6.8	0.0	0.900	0.823	0.000	1	0.0	0.0	6	0.217
3.001	0.194	0.860	6.8	0.1	0.823	0.900	0.000	2	0.0	0.0	8	0.279
3.002	0.191	1.241	21.9	0.1	0.900	1.211	0.000	2	0.0	0.0	7	0.284
3.003	0.290	2.405	42.5	0.1	1.211	1.784	0.000	2	0.0	0.0	6	0.450
1.004	0.223	0.876	15.5	0.3	1.256	1.117	0.000	6	0.0	0.0	14	0.326
1.005	0.353	1.637	28.9	0.3	1.117	1.163	0.000	6	0.0	0.0	11	0.502
2.000	0.281	1.411	11.1	0.1	0.450	1.179	0.000	2	0.0	0.0	7	0.394
1.001	0.200	0.876	15.5	0.2	1.179	1.388	0.000	4	0.0	0.0	12	0.287
1.002	0.156	0.618	10.9	0.2	1.388	1.784	0.000	4	0.0	0.0	14	0.222
1.003	0.284	1.241	21.9	0.3	1.784	1.256	0.000	6	0.0	0.0	12	0.408
1.000	0.213	1.263	9.9	0.0	0.700	1.179	0.000	1	0.0	0.0	5	0.286

SEWAY 🛟						Network Alan Cori 10/04/20	ner		Dined Plan	Dinedor Foul Plan			
<u>Pipeline Schedule</u>													
Link	Length	Slope	Dia	Link	US CL	US IL	US Depth	DS CL	DS IL	DS Depth			
	(m)	(1:X)	(mm)	Туре	(m)	(m)	(m)	(m)	(m)	(m)			
3.000	23.000	60.0	100	Circular	72.800	71.800	0.900	72.340	71.417	0.823			
3.001	7.013	60.0	100	Circular	72.340	71.417	0.823	72.300	71.300	0.900			
3.002	20.560	50.0	150	Circular	72.300	71.250	0.900	72.200	70.839	1.211			
3.003	10.325	13.4	150	Circular	72.200	70.839	1.211	72.000	70.066	1.784			
1.004	46.142	100.0	150	Circular	71.200	69.794	1.256	70.600	69.333	1.117			
1.005	9.960	28.8	150	Circular	70.600	69.333	1.117	70.300	68.987	1.163			
2.000	16.308	22.4	100	Circular	71.800	71.250	0.450	71.800	70.521	1.179			
1.001	20.865	100.0	150	Circular	71.800	70.471	1.179	71.800	70.262	1.388			
1.002	39.253	200.0	150	Circular	71.800	70.262	1.388	72.000	70.066	1.784			
1.003	13.615	50.0	150	Circular	72.000	70.066	1.784	71.200	69.794	1.256			
1.000	18.955	27.9	100	Circular	72.000	71.200	0.700	71.800	70.521	1.179			
Link	US	Dia	No	ode	МН	DS	Dia	Width	Node	МН			
	Node	(mm) Ту	ре	Туре	Node	(mm)	(mm)	Туре	Туре			
3.000	5	600) Man	hole A	doptable	6	600		Manhole	Adoptable			
3.001	6	600) Man	hole A	doptable	PTP1	2000		Manhole	Adoptable			
3.002	PTP1	2000) Man	hole A	doptable	8	600		Manhole	Adoptable			
3.003	8	600) Man	hole A	doptable	9	600		Manhole	Adoptable			
1.004	10	1200) Man	hole A	doptable	Reed Bed	1200		Manhole	Adoptable			

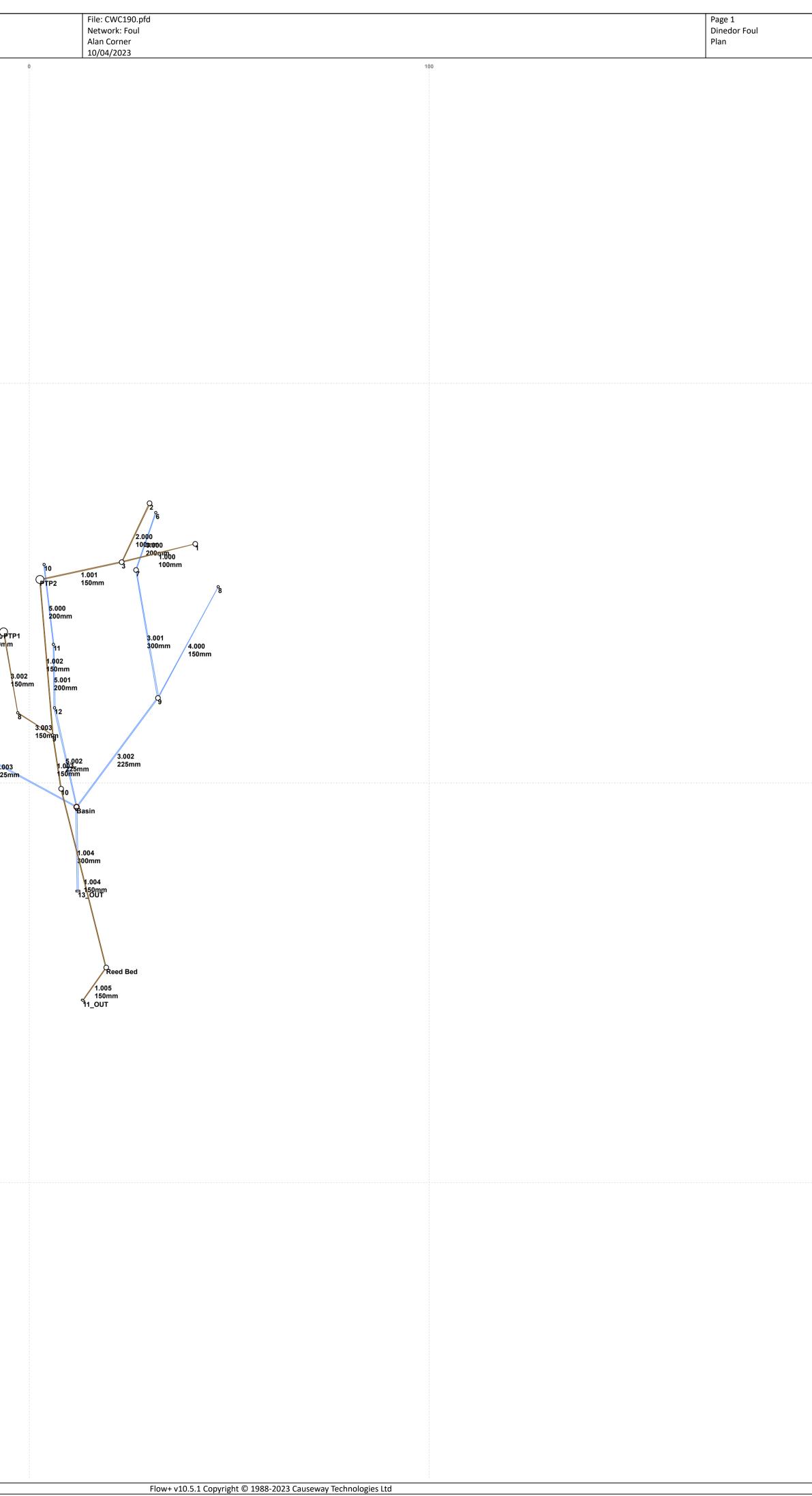
File: CWC190.pfd

Page 2

Corner Water Consulting Ltd

3.003	8	600	Manhole	Adoptable	9	600		Manhole	Adoptable
1.004	10	1200	Manhole	Adoptable	Reed Bed	1200		Manhole	Adoptable
1.005	Reed Bed	1200	Manhole	Adoptable	11_OUT	400	900	Manhole	Headwall
2.000	2	1200	Manhole	Adoptable	3	1200		Manhole	Adoptable
1.001	3	1200	Manhole	Adoptable	PTP2	2000		Manhole	Adoptable
1.002	PTP2	2000	Manhole	Adoptable	9	600		Manhole	Adoptable
1.003	9	600	Manhole	Adoptable	10	1200		Manhole	Adoptable
1.000	1	1200	Manhole	Adoptable	3	1200		Manhole	Adoptable

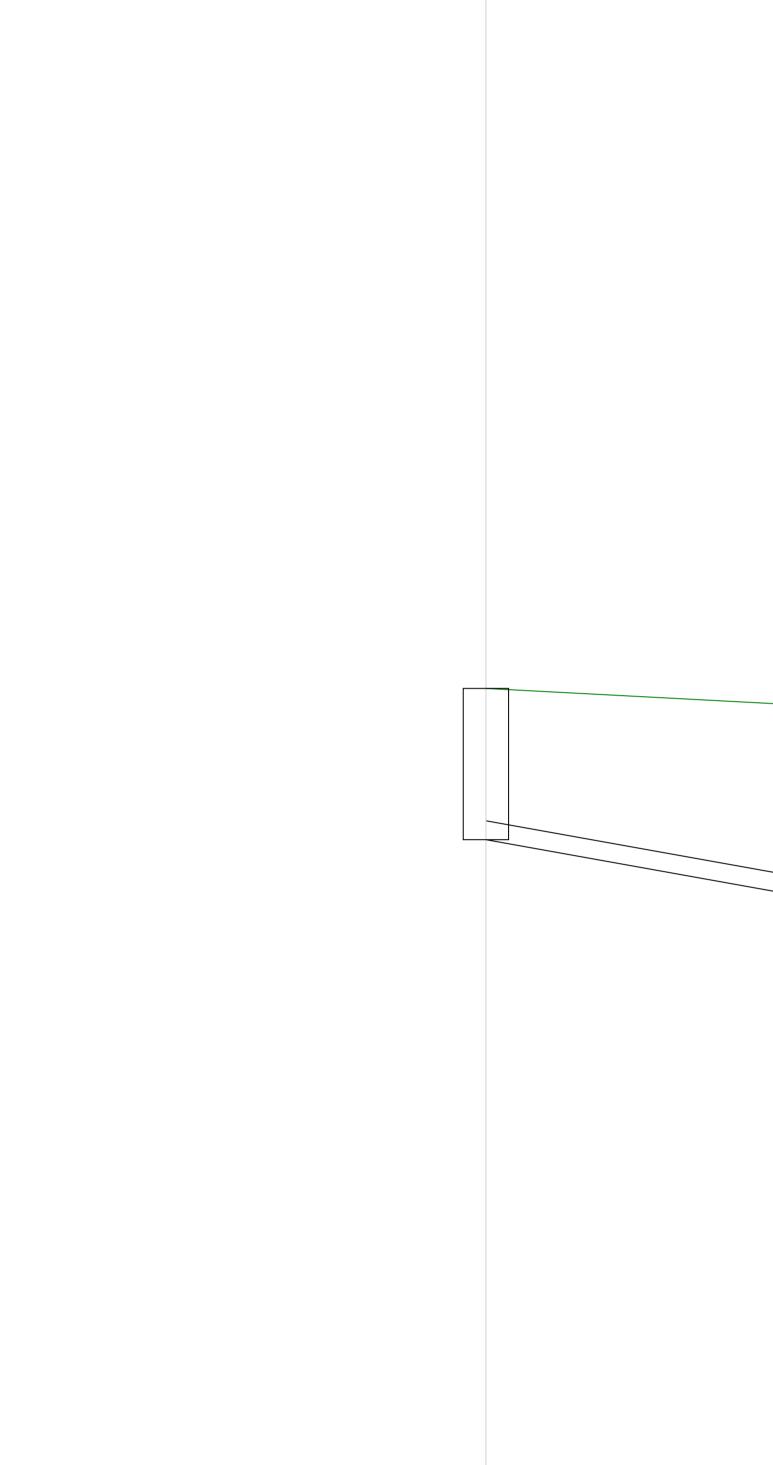
Manhole Schedule


Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Connections	Link	IL (m)	Dia (mm)
5	-36.394	36.408	72.800	1.000	600		⊖→0			
							C	3.000	71.800	100
6	-13.426	37.613	72.340	0.923	600		1	3.000	71.417	100
							1			
							C	3.001	71.417	100
PTP1	-6.416	37.811	72.300	1.050	2000		1	3.001	71.300	100
							1			
							° C	3.002	71.250	150
8	-2.862	17.561	72.200	1.361	600			3.002	70.839	150
							0	3.003	70.839	150
10	7.984	-1.448	71.200	1.406	1200				69.794	150
								1.004	69.794	150

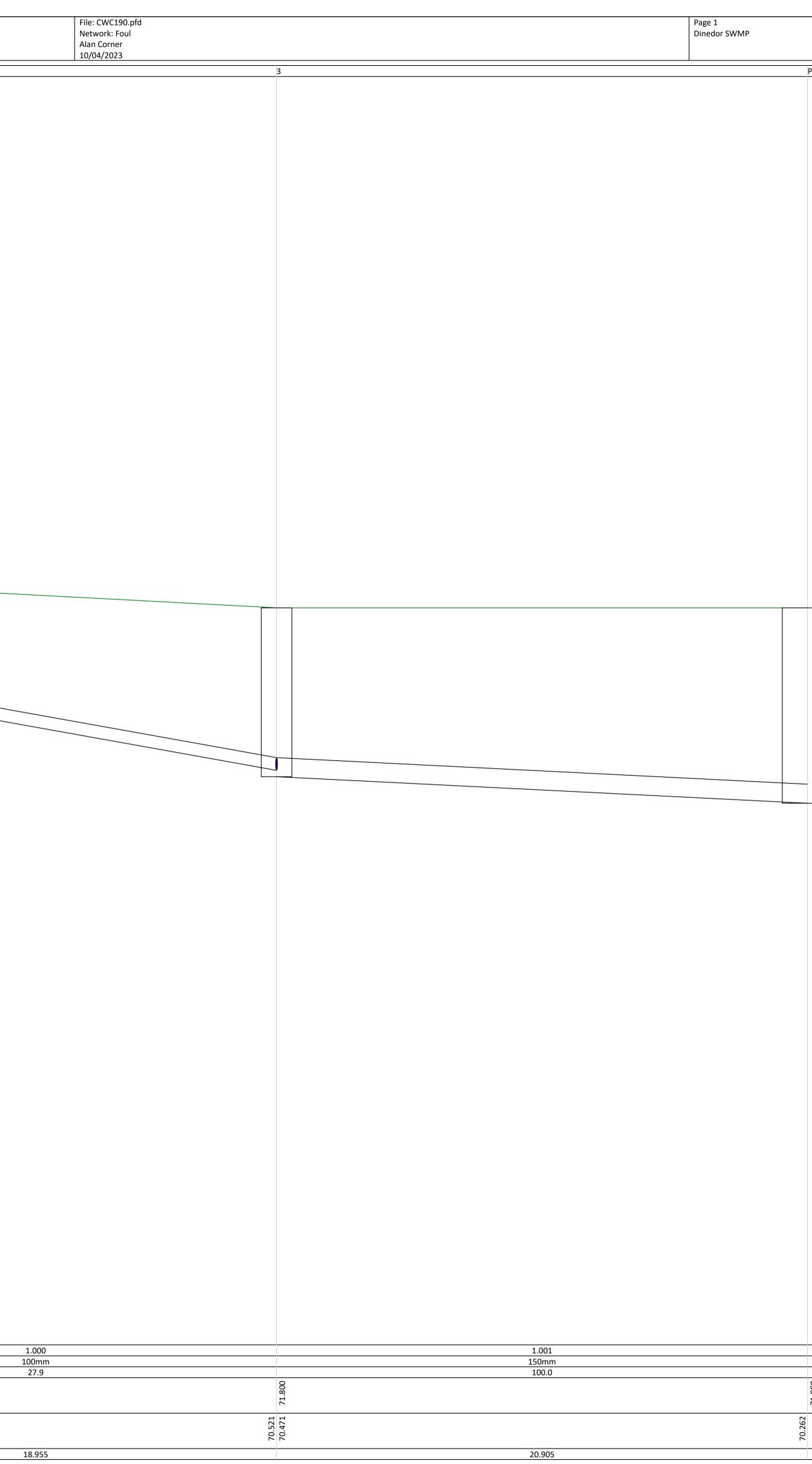
				<u></u>		leane				
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Width (mm)	Connections	Link	IL (m)	Dia (mm)
Reed Bed	19.259	-46.191	70.600	1.267	1200			1.004	69.333	150
							0 ⁰ 0	1.005	69.333	150
11_OUT	13.705	-54.459	70.300	1.313	400	900		1.005	68.987	150
2	30.096	70.006	71.800	0.550	1200		<u>ې</u>	2.000	71.250	100
3	23.126	55.262	71.800	1.329	1200		1 1	2.000	70.521	100
5	23.120	55.262	, 1.000	1.525	1200			1.000	70.521	100 100 150
9	5.835	11.996	72.000	1.934	600		2 1	3.003	70.066	150
-								1.002	70.066	150
1	41.521	59.837	72.000	0.800	1200		0 U	1.003	70.066	150
1	41.521	55.057	72.000	0.000	1200		•		74.000	100
DTD2	2.676	F4 400	74.000	4 5 3 3	2000		0	1.000	71.200	100
PTP2	2.676	51.122	71.800	1.538	2000			1.001	70.262	150
							0 0	1.002	70.262	150

Manhole Schedule

	Corner Water Consulting Ltd	
-200	-1(00
100		
		Q
		1.000 225mm
		1.001 225mm 5 3.000 6 3.00- 3 100mm 100m
		2,000 225mm ^{225mm}
		est and the second s
0		11 22
-100		

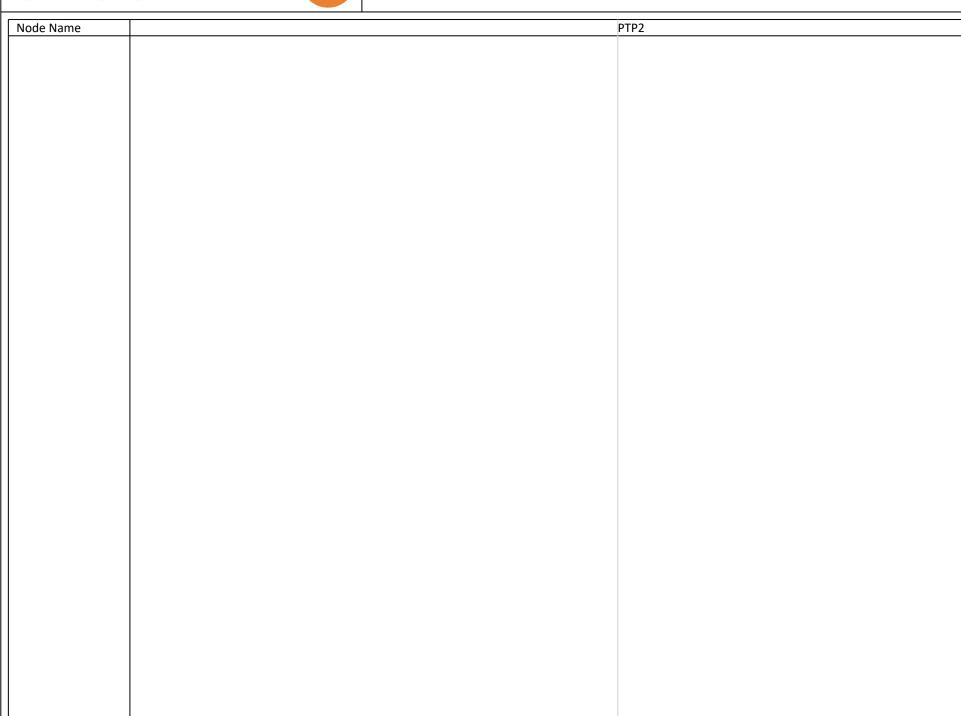


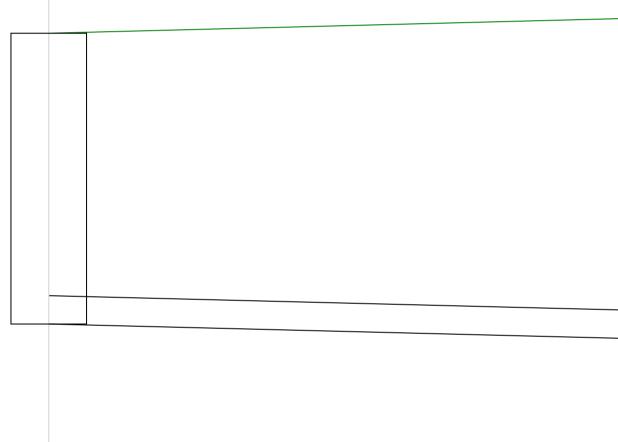
2	00 30	20



Node Name

A1 drawing



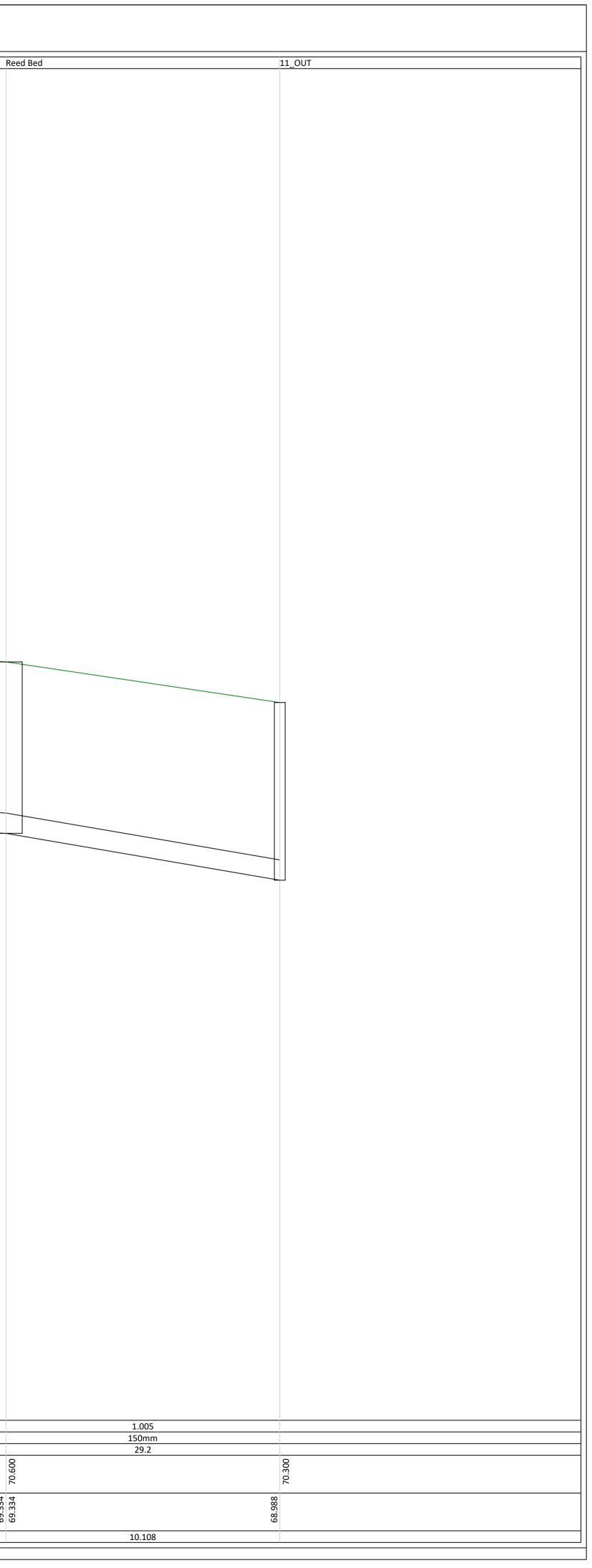

Hor Scale 100 Ver Scale 20 Datum (m) 66.000 Link Name Section Type Slope (1:X) Cover Level (m) Invert Level (m) Length (m)

]
	PTP2	_
	71.800	
.262		

A1 drawing	
Hor Scale 100	
Ver Scale 20	
Datum (m) 66.000	
Link Name	
Section Type	
Slope (1:X)	
Cover Level (m)	

Invert Level (m)

Length (m)

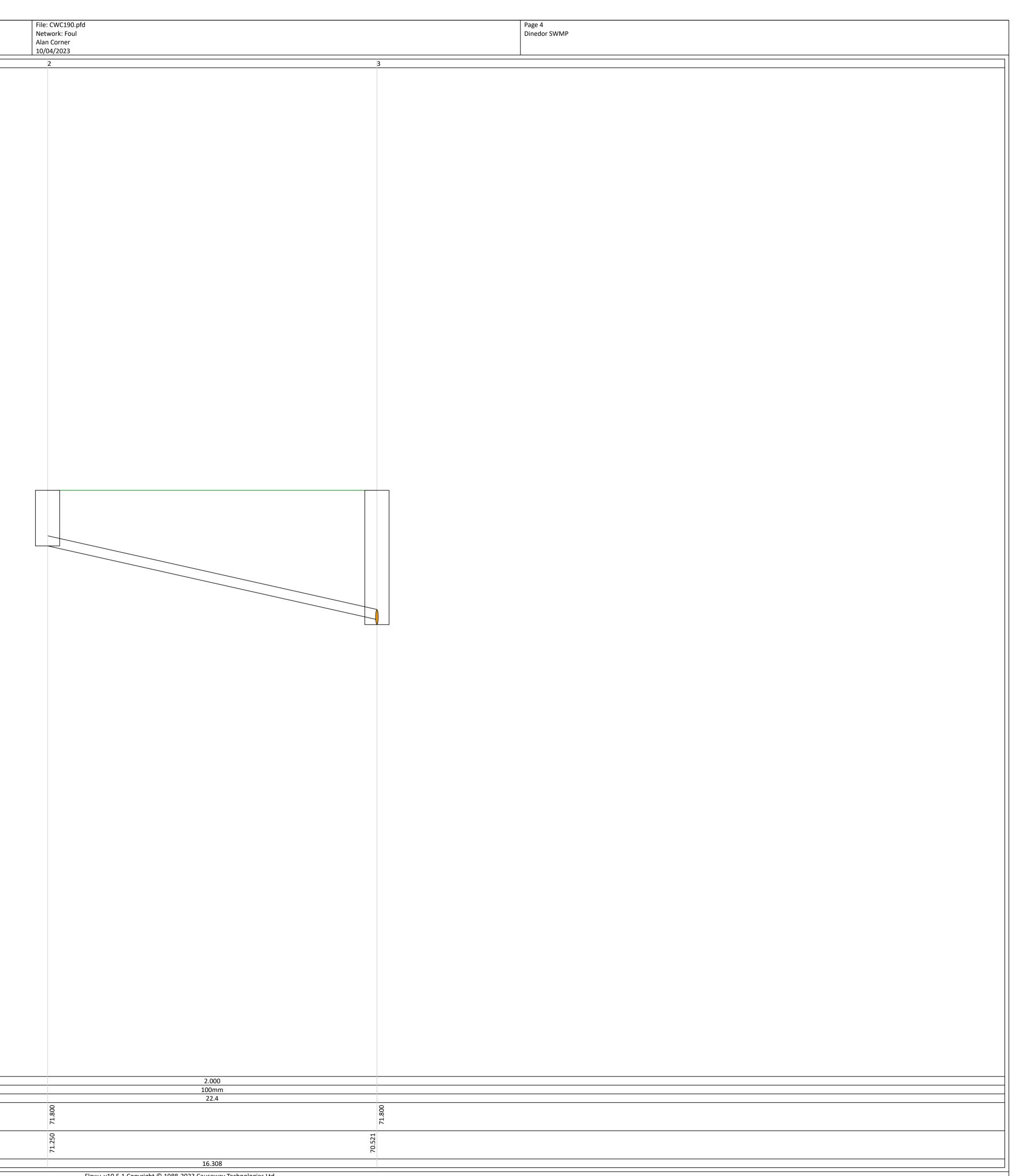

	File: CWC190.pfd Network: Foul Alan Corner 10/04/2023	Page 2 Dinedor SWMP
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000		
150mm 150mm 200.0 50.0 000 000 000	1.002	1.002
39.058	150mm 200.0	150mm
	39.058	

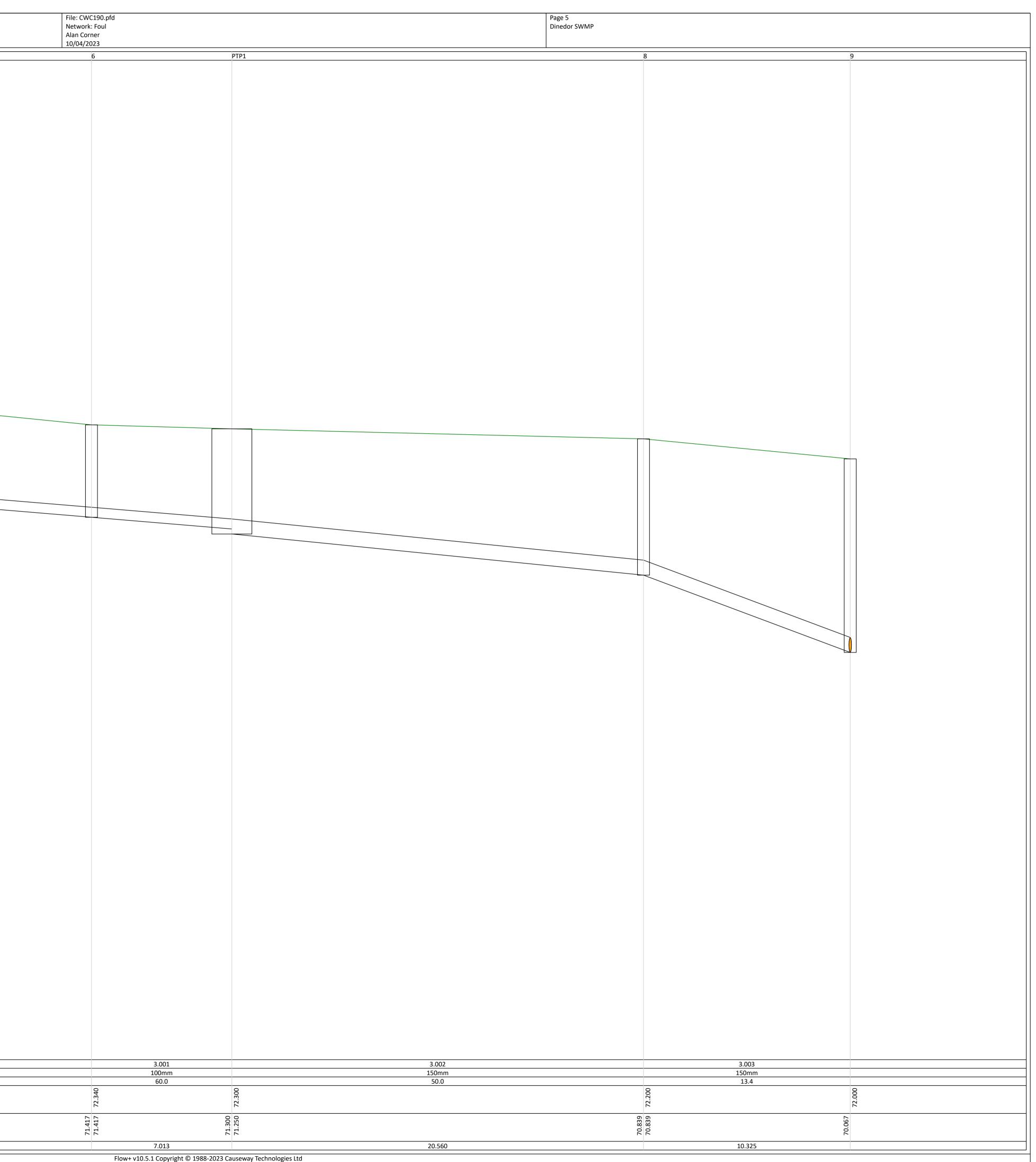
		10
Node Name		10
A1 drawing Hor Scale 100 Ver Scale 20 Datum (m) 65.000 Link Name		
Section Type Slope (1:X) Cover Level (m)		
Invert Level (m)	 	69.795 71.200

File: CWC190.pfd	Page 3
Network: Foul	Dinedor SWMP
Alan Corner	
10/04/2023	

	_		
1.004			
150mm			
100.0			
	70.600	3	
	0.6	2	
	69.334 69.334		
	59.5	? }	
	2	•	

46.142 Flow+ v10.5.1 Copyright © 1988-2023 Causeway Technologies Ltd


Node Name


Ver Scale 20

Datum (m) 66.000 Link Name Section Type Slope (1:X) Cover Level (m)

	Invert Level (m)	
	Length (m)	
F		
L		

CAUSEWAY		
Node Name	5	
\1 drawing		
lor Scale 100 /er Scale 20		
Datum (m) 66.000 ink Name		3.000
ection Type		100mm 60.0
Cover Level (m)	72.800	
nvert Level (m)	71.800	
Length (m)		23.000

Corner Water Consulting

Registered office:

1 Cricklade Court,

Cricklade Street,

Swindon SN1 3EY

Registered in England 13675352

Contact info@cornerwaterconsulting.co.uk