Drainage Report CATS Site Leys Hill Walford HR9 5QU

Report date: 23 August 2016

Job number: 2504

260 Oldbury Road, Rowley Regis. B65 0QG	Tel: 0121 296 0408
	Web: www.pennellassociates.com
	Email: info@pennellassociates.com

This report has been prepared for the sole benefit, use and information of the Client for the purposes set out in the report or instructions commissioning it. The liability of Pennell Associates Limited in respect of the information contained in the report will not extend to any third party.

Author:Andrew PennellDate:23 August 2016

Report Amendment Sheet

Revision	Amendment	Prepared By:	Date:
0	Initial Issue	AP	02.08.2016
1	Drainage items added	АР	10.08.2016
2	Confirmation of testing included and outline trench design for highway	АР	03.11.2016

1. INTRODUCTION

2. SUSTAINABLE URBAN DRAINAGE

2.1. Ground Investigation

2.2. Detention

2.3. Attenuation

3. SITE DRAINAGE

3.1. Surface Water Sewage

3.2. Attenuation Storage Sizing

3.3. Foul Water Sewage

3.4. Flooding

4. CONCLUSION

1. INTRODUCTION

This report provides an overview of the drainage of the site for both foul and surface water along with the considerations for the provision of Sustainable Urban Drainage within the development.

This report has been prepared by Andrew Pennell, BEng MSc MSc CEng MIStructE CMIOSH, on behalf of Pennell Associates Limited.

This report is based on information provided by the property owner, with soakaways and drainage based upon percolation information provided.

2. SUSTAINABLE URBAN DRAINAGE

The overall role of Sustainable Urban Drainage (SuDS) is the use of drainage design to mitigate against the adverse effect of rainwater run off due to the impact of both new and existing developments.

Typical techniques for sustainable urban drainage include:

- Infiltration of stormwater into the ground.
- Storage of stormwater at a suitable location on site for later discharge post the peak of any storm.
- Use of permeable surfaces to allow stormwater to soak into the ground rather than run off site.
- Temporary trapping of water in vegetation for later natural evaporation (green roofs etc.).
- Control of stormwater at source.

The SuDS manual¹ confirms the role of Sustainable Urban Drainage as, "SuDS designs should aim to reduce runoff by integrating stormwater controls throughout the site in small, discrete units. Through effective control of runoff at source, the need for large flow attenuation and flow control structures should be minimised."

2.1. Ground Investigation

Checks with the British Geological Survey 'Geology of Britain viewer' indicate that the underlying bedrock geology is the "Tintern Sandstone Formation - Sandstone. Sedimentary Bedrock "There are no records of the superficial deposits in the area.

Records of the deeper geology suggest the regular usage of the wells in the area which draw water from the area and the continual water for the underlying Limestone Shales.

Percolation tests have been undertaken on the site (See Appendix A, Percolation Tests and soakaway design) which have shown that the upper level of soil is capable of being used for the purpose of construction of soakaways on the site.

Infiltration testing has been undertaken (5th, 6th, 7th August 2016) in accordance with the requirements of BRE Digest 365 (Soakaway Design), the results of which are included in Appendix A and used for the calculation of the soakaway sizes for plots 1-5 of the development.

2.2. Detention

Detention (local storage of water at ground level) of stormwater flows generally requires a suitable area of land to be available to store the water. As shown by the initial attenuation

¹ Woods Ballard, B., R. Kellagher, P. Martin, C. Jefferies, R. Bray, and P. Shaffer. "CIRIA C697. The SuDS Manual." *CIRIA, London* (2007).

calculations (Appendix B) a significant area of land would be required for the formation of a suitable detention basin on the site. The use of detention ponds is therefore uncommon in residential areas.

Detention areas present safety issues due to the occasional flooding of the area which needs to be mitigated by fencing etc. The close proximity of housing generally precludes this as a system which can be used on this project. It is therefore not considered a suitable approach for the site and individual soakaways are suggested as the most appropriate for the site based on the site layout.

2.3. Attenuation

Attenuation works in a similar manner to detention in that the flow out of a site is physically restricted by means of a limited size of opening where the pipes leave the site. The main difference is that waste is stored temporarily by means of the use of oversized drainage pipework or below ground storage areas. The soakaways have been provided with suitable internal storage to provide for the 1 in 10 year flows to be stored within the soakaways without the risk of the overflowing of the drainage system.

3. SITE DRAINAGE

3.1. Surface Water Sewage

It is proposed to construct a soakaway for each of the plots. Based on the percolation tests which have been provided for the site (design , soakaways have been provisionally sized in accordance with the BRE Digest 365 'Soakaway Design', published by the Building Research Establishment, Watford.

In line with general guidance the surface water has been designed to provide capacity for the 1 in 10 year storm event.

The surface water pipes have been sized in line with the maximum rainfall intensities of 107 mm/hour for the 1 in 10 year storm and 134 mm/hour for the 1 in 30 year storm. Using a nominal pipe gradient of 1 in 80 (for the initial drainage appraisal) a 150 mm pipe will not surcharge at either of the storm returns. Detailed design may allow for a smaller diameter pipe to be used for some of the drainage runs which do not to provide capacity for the entire roof of a dwelling.

The entire surface water drainage system will remain in private hands and not be offered up for adoption.

3.2. Attenuation Storage Sizing

Each individual surface water system and soakaway has been designed to accommodate flows from the connected property and as such no additional attenuation will be provided beyond the soakaways for the properties. The design of the soakaways is based upon test pits excavated on site in line with normal practice. As with all ground investigation the sample provided may not be representative of the site as a whole and as such additional investigations may be required relative to the plots should the ground conditions vary from those present at the locations tested. Pennell Associates has not undertaken any investigatory work in relation to the sub strata other than that indicated in this report within the geology section.

3.3. Highways Drainage

All new hard surfaces to the development will be formed in permeable paving to allow for the infiltration of water into the ground in line with SUDs recommendations for such areas.

Existing highway drains naturally to the side and soakaway by infiltration. If this is to be formalised calculations indicate that a trench 1.75 m deep by 1 m wide running parallel to a 5m wide carriageway should be sufficient to allow natural infiltration of any surface water which is generated on this surface.

3.4. Foul Water Sewage

The general outline of the foul water sewerage system has been indicated on the attached drawings. Each property will be provided with separate drainage runs and individual property sewage treatment plants. It is initially envisaged that these will be Klargester 'biodisc' units or similar. Outflow from the individual sewage treatment plants will flow to a communal sewage outflow area for percolation to the ground.

The information provided has indicated that the Vp for the site is 61 on the basis of this and the use of 900mm trench the following trench lengths will be required.

Plot	Bedrooms	Trench Length (m)
1	5	95
2	5	95
3	5	95
4	5	95
5	5	95

Trench length =
$$(5+2) \times 61 \times 0.2 \times \frac{100(cm)}{90(cm)}$$

 $Trench \ length = No. \ People \times Vp \times sewage \ treatment \ area \ coefficient \times \frac{100(cm)}{Trench \ width(cm)}$

It is recommended that 1m separation is provided between the sides of each trench.

The size of area required has been indicated on the drawings, however, final layout of pipework within this area will be subject to detailed design.

3.5. Flooding

As noted in the flood risk assessment, the general soil classification and percolation tests indicate that the ground is generally accepting of infiltration flows which will mitigate against excessive overland flows. However, in the event of exceptional infrequent intense rainfall water will, due to the slope gradients, have the potential for the generation of overland flows.

Excessive flooding from any source can bring about issues with inundation of the surface water drainage system, however, this source has the potential to produce the most unexpected of issues and may be coupled with flows from roofs and other areas resulting in early inundation of the surface water system and premature overtopping of the drainage system. To mitigate against this possibility no open gullies or similar will be provided to the exterior of the property. Roof drainage will enter into the surface water system by means of 'P traps' or similar to prevent unwanted surface water from inundating the drainage system.

4. CONCLUSION

The surface water drainage systems to the houses site will be provided by five independent surface water systems with independent soakaways, as the ground investigations have indicated that this is a viable option and as such requires no drainage off site. The use of an infiltration method is compliant with SuDS drainage principles.

The foul drainage system will be provided by use of individual sewage treatment plants for each of the new building plots with communal infiltration beds. No connection to the public foul sewer is envisaged.

Appendix A

Provisional Soakaway Sizing

Land at CA Road, Walford,			
HR9	5QU	Revision	
Job No:	2504	Page:	SW/01
Prepared By:	AP	Date:	10/08/2016

SUMMARY OF CALCULATIONS									
critical design rainfall duration 't _{crit} ' = 360 min									
required storage volume ' V_{req} ' =	12.63	m ³							
provided storage volume ' V_{prov} ' =	13.23	m ³							
utilisation factor =	0.96	.OK							
required time to discharge 50% $'t_{50}'$ =	13.51	hours							
utilisation factor =	0.56	.OK							

SOAKAWAY DATA

total depth from ground level 'D_b' [m] =

depth to drain invert level 'D_d' [m] =

soakaway effective depth 'D_{eff}' [m] =

free volume in infill aggregate [%] =

SOAKAGE TRIAL PIT DATA soakage trial pit width 'Wt' [m] =

total depth from ground level ' D_{tb} ' [m] =

soakage trial pit length 'Lt' [m] =

soakaway ring internal diameter 'D_{int}' [mm] =

number of ring soakaways:

circular pit diameter 'D' [m] =

1

5.25

2100

2.50

1.00

1.50

30

1.00

1.00

1.50

ALTERNATIVE SOAKAWAY SIZES											
	trench soakaways										
width of trench [mm]:	450	600	900								
required trench length [m]:	37.78	30.61	22.65								
	ring soakaways										
diameter of ring [mm]:	1800	2400	2700								
required pit diameter [m]:	5.33	4.84	4.52								
Description officiations double and much an of m	ite and in Oralia										

* Based on effective depth and number of pits as in Soakaway Data table

Pennell Associates Limited

www.pennellassociates.com Tel: 0121 296 0408 Section: Soakway based on CATS Hole 1

260 Oldbury Road, Rowley Regis. B65 0QG

ell Associater

GENI	ERAL	DATA	

site location: England and Wales soakaway type: perforated concrete ring

pit shape: circular pit around ring

impermeable area drained to soakaway 'A' $[m^2]$ =	400
60 min rainfall depth of 5 year return period 'R' [mm] =	20
M5-60 to M5-2d rainfall ratio 'r' =	0.40

allowance for climate change: No

SOIL	INFIL	TRAT	ION DA	TA

allowance for infiltration through soakaway base:	No
available on-site infiltration test results: • Yes	O No
use soakage trial pit table below	
internal surface area of trial pit a_{p50} [m ²] = 3	3.24
storage volume between 75-25% $V_{p}' [m^{3}] = 0$	0.56
time for water to fall from 75-25% t_p' [min] = 26	62.11
soil infiltration rate 'f' [m/s] = 1.1	0E-05

M5-D

rainfalls

[mm] 7.47

10.47

12.67

16.07

20.00

24.13

28.93

32.07

35.87

44.80

1.24

1.22

1.21

1.20

1.18

29.93

35.42

38.92

43.13

52.88

11.97

14.17

15.57

17.25

21.15

area of trial pit ' a_{p50} ' $[m^2] = 3.24$ depth to pipe invert level ' D_{tp} ' $[m] = 0.38$ etween 75-25% ' V_p ' $[m^3] = 0.56$ soakage trial pit effective depth ' D_{teff} ' $[m] = 1.12$												
all from 75-25% 't _p ' [min] = 262.11 free volume in infill aggregate [%] = 100												
il infiltration rate 'f' [m/s] = 1.10E-05 NOTE: faces of excavation assumed to be vertical												
		REQUIRE	D STORAG	E CA	PACITY PE	R RAINFAL	L DU	RATION				
		M10-E)		ignore			ignore		outflow from	required	
5	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	soakaway [m³]	storage <i>[m³]</i>	
	1.20	9.00	3.60							0.04	3.56	
	1.22	12.79	5.12							0.08	5.03	
	1.23	15.59	6.24							0.12	6.11	
	1.24	19.92	7.97							0.24	7.72	

2.24 * Z2 is a growth factor from M5 rainfalls

rainfall

factor Z1

0.37

0.52

0.63

0.80

1.00

1.21

1.45

1.60

1.79

rainfall

duration

[min]

5 10

15 30

60

120

240

360

600

1440

	SOAKAGE TRIAL PIT INFILTRATION TEST RESULTS																			
water	level measurement N°:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Soakage	time [min] =	0	183	355	535															
Trial 1	depth to water [m] =	0.38	0.75	1.13	1.50															
Soakage	time [min] =	0	180	348	531															
Trial 2	depth to water [m] =	0.38	0.75	1.13	1.50															
Soakage	time [min] =	0	180	352	532															
Trial 3	depth to water [m] =	0.38	0.75	1.13	1.50															

Spreadsheet provided by: www.YourSpreadsheets.co.uk

calculations are based on BRE Guidelines (Digest 365)

0.98

1.96

2.94

4.89

11.75

10.99

12.21

12.63

12.36

9.41

Pennell Associates Limited

260 Oldbury Road, Rowley Regis. B65 0QG www.pennellassociates.com Tel: 0121 296 0408

Section: Soakway based on CATS Hole 2

Pennell Associates

6

ALTERNATIVE SO	DAKAWAY	SIZES	
	trer	nch soakaw	ays
width of trench [mm]:	450	600	900
required trench length [m]:	37.53	30.34	22.50
	rir	ng soakawa	ys
diameter of ring [mm] :	1800	2400	2700
required pit diameter [m]:	5.31	4.82	4.50

* Based on effective depth and number of pits as in Soakaway Data table

GENERAL DATA	
site location: England and Wales	
soakaway type: perforated concrete ring	g
pit shape: circular pit around ring	
impermeable area drained to soakaway 'A' $[m^2]$ =	400
60 min rainfall depth of 5 year return period 'R' [mm] =	20
M5-60 to M5-2d rainfall ratio 'r' =	0.40
allowance for climate change:	No
SOIL INEIL TRATION DATA	

SOIL INFILTRATION DATA	
allowance for infiltration through soakaway base:	No
available on-site infiltration test results: • • Ye	s 🔾 No
use soakage trial pit table below	
internal surface area of trial pit ' a_{p50} ' [m ²] =	4.09
storage volume between 75-25% 'V _p ' [m³] =	0.78
time for water to fall from 75-25% 't _p ' [min] =	282.59
soil infiltration rate 'f' [m/s] =	1.13E-05

	storage	surface are volume betv vater to fall soil i	veen 7 from 7	5-25% 'V _p ' [5-25% 't _p ' [r	[m ³] = 0.	09 78 2.59 E-05			ge tria	n to pipe inve l pit effective olume in infi NOTE: fac	e depth 'D _{teff} Il aggregate	' <i>[m]</i> = 1.	38 12 00 vertical	
				REQUIRE	ED STORAG	E CA	PACITY PE	R RAINFAL	L DU	RATION				
rainfall		M5-D		M10-D			ignore	9	ignore			outflow from	requir	ed
duration <i>[min]</i>	rainfall factor Z1	rainfalls <i>[mm]</i>	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	Z2	rainfalls <i>[mm</i>]	inflow [m ³]	Z2	rainfalls [mm]	inflow [m ³]	soakaway [m ³]	storag [m ³	-
5	0.37	7.47	1.20	9.00	3.60							0.04	3.56	3
10	0.52	10.47	1.22	12.79	5.12							0.08	5.03	3
1 5	0.00	10.07	4 00	15 50	0.04	l						0.40	C 1.	4

	rainnain	rainfall												
	duration <i>[min]</i>	rainfall factor Z1	rainfalls <i>[mm]</i>	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	Z2	rainfalls <i>[mm</i>]	inflow [m ³]	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	soakaway [m ³]	storage [m ³]
[5	0.37	7.47	1.20	9.00	3.60							0.04	3.56
[10	0.52	10.47	1.22	12.79	5.12							0.08	5.03
[15	0.63	12.67	1.23	15.59	6.24							0.13	6.11
[30	0.80	16.07	1.24	19.92	7.97							0.25	7.72
[60	1.00	20.00	1.24	24.80	9.92							0.50	9.42
[120	1.21	24.13	1.24	29.93	11.97							1.01	10.96
[240	1.45	28.93	1.22	35.42	14.17							2.01	12.15
	360	1.60	32.07	1.21	38.92	15.57							3.02	12.55
	600	1.79	35.87	1.20	43.13	17.25							5.04	12.21
[1440	2.24	44.80	1.18	52.88	21.15							12.09	9.06

* Z2 is a growth factor from M5 rainfalls

	SOAKAGE TRIAL PIT INFILTRATION TEST RESULTS																			
water	level measurement N°:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Soakage	time [min] =	0	187	363	550															
Trial 1	depth to water [m] =	0.38	0.75	1.13	1.50															
Soakage	time [min] =	0	195	382	580															
Trial 2	depth to water [m] =	0.38	0.75	1.13	1.50															
Soakage	time [min] =	0	187	367	558															
Trial 3	depth to water [m] =	0.38	0.75	1.13	1.50															

Spreadsheet provided by: www.YourSpreadsheets.co.uk

calculations are based on BRE Guidelines (Digest 365)

Land at CATS, Leys Hill

Road, Walfo	rd, Ross-on-		
Wye, HI	R9 5QU	Revision	
Job No:	2504	Page:	SW/02
Prepared By:	AP	Date:	10/08/2016

SUMMARY OF CALCUL	ATIONS	
critical design rainfall duration t_{crit} =	360	min
required storage volume ' V_{req} ' =	12.55	m ³
provided storage volume ' V_{prov} ' =	13.23	m ³
utilisation factor =	0.95	.OK
required time to discharge 50% $'t_{50}'$ =	13.13	hours
utilisation factor =	0.55	.OK

SOAKAWAY DATA	
number of ring soakaways:	1
circular pit diameter 'D' [m] =	5.25
soakaway ring internal diameter 'D _{int} ' [mm] =	2100
total depth from ground level 'D _b ' [m] =	2.50
depth to drain invert level 'D _d ' [m] =	1.00
soakaway effective depth 'D _{eff} ' [<i>m</i>] =	1.50
free volume in infill aggregate [%] =	30

SOAKAGE TRIAL PIT DATA	
soakage trial pit width 'W _t ' [<i>m</i>] =	1.00
soakage trial pit length 'Lt' [m] =	1.40
total depth from ground level 'D _{tb} ' [m] =	1.50
depth to pipe invert level 'D _{tp} ' [<i>m</i>] =	0.38
soakage trial pit effective depth 'D _{teff} ' [m] =	1.12
free volume in infill aggregate [%] =	100

Appendix B

Initial Surface Water Pipe Sizing

Site name:	CATS
Site location:	Leys Hill Road, Walford, Ross-on-Wye, herefords

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Greenfield runoff estimation for sites

Site coordinates					
Latitude:					
Longitude:					
Reference:	00000000000 / 1.5				
Date:	10 Aug 2016				

Site characteristics

Total site area	1.5	ha
Significant public open space	0	ha
Area positively drained	1.5	ha

Methodology

Greenfield runoff method	IH124
Qbar estimation method	Calculate from SPR and SAAR
SPR estimation method	Calculate from SOIL type
SOIL type	2
HOST class	N/A
SPR	0.30

Hydrological characteristics

Hydrological characteristics	Default	Edited	
SAAR	0	0	mm
M5-60 Rainfall Depth	20	14	mm
'r' Ratio M5-60/M5-2 day	0.4	0.2	
FEH/FSR conversion factor	0.97	0.97	
Hydrological region	1	1	
Growth curve factor: 1 year	0	0.85	
Growth curve factor: 10 year		1.45	
Growth curve factor: 30 year	0	1.95	
Growth curve factor: 100 year	0	2.48	

Greenfield runoff rates

Qbar	Default	Edited	I/s
1 in 1 year		0.00	l/s
1 in 30 years		0.00	l/s
1 in 100 years		0.00	l/s

HR Wallingford Ltd, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

Site name:	CATS
Site location:	Leys Hill Road, Walford, Ross-on-Wye, herefords

This is an estimation of the greenfield runoff rate limits that are needed to meet normal best practice criteria in line with Environment Agency guidance "Preliminary rainfall runoff management for developments", W5-074/A/TR1/1 rev. E (2012) and the CIRIA SUDS Manual (2007). It is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Greenfield runoff estimation for sites

Site coordinates				
Latitude:				
Longitude:				
Reference:	00000000000 / 1.5			
Date:	10 Aug 2016			

Site characteristics

Total site area	1.5	ha
Significant public open space	0	ha
Area positively drained	1.5	ha

Methodology

Greenfield runoff method	FEH	
Qmed estimation method	Calculate from BFI and SA	AR
BFI and SPR estimation method	Calculate from dominant HOST	
HOST class	N/A	
BFI / BFIHOST	0.00	
Qmed	N/A I/s	
Qbar / Qmed Conversion Factor	N/A	

Hydrological characteristics

Hydrological characteristics	Default	Edited	
SAAR	0	0	mm
M5-60 Rainfall Depth	20	14	mm
'r' Ratio M5-60/M5-2 day	0.4	0.2	
FEH/FSR conversion factor	0.97	0.97	
Hydrological region	1	1	
Growth curve factor: 1 year	0	0.85	
Growth curve factor: 10 year		1.45	
Growth curve factor: 30 year	0	1.95	
Growth curve factor: 100 year	0	2.48	

Greenfield runoff rates

Qbar	 	I/s
1 in 1 year	 	I/s
1 in 30 years	 	l/s
1 in 100 years	 	l/s

HR Wallingford Ltd, the Environment Agency and any local authority are not liable for the performance of a drainage scheme which is based upon the output of this report.

Higham Hill Structures Ltd - Civil & Structural		
Engineers		
Applewood Grove, Cradley Heath. B64 6EW		
Tel: 0121 437 0407		

CATS, Leys Walford, Ros			
herefordshire HR9 5QU		Revision	
Job No:	2504	Page:	SW/03
Prepared By:	AP	Date:	10/08/2016

GENERAL DATA					
site location: England and Wa	les				
60 min rainfall depth of 5 year return period 'R' [mm] =	20				
M5-60 to M5-2d rainfall ratio 'r' =	0.40				
proposed discharge rate 'v1' [litre/s] =	12.00				
proposed discharge rate 'v2' [litre/s] =	15.00				

Section: Max Flow Check

allowance for climate change: 0%

SUMMARY OF CALCULATIONS					
required storage volume for discharge rate $v_1' =$	0.00	m³			
required storage volume for discharge rate $v_2' =$	0.00	m³			

AREA DATA	impermeability [%]	effective area [m ²]				
impermeable area 'A ₁ ' $[m^2] =$ 400	100.00	400				
landscaping and/or green roof area $A_2'[m^2] = 0$	80.00	0				
other partially permeable area $A_3 [m^2] = 0$	20.00	0				
AREA DRAINED TO ATTENUATION TANK = 400 m ²						

AREA DRAINED TO ATTENUATION TANK =

REQUIRED STORAGE VOLUME PER RAINFALL DURATION FOR DISCHARGE RATE v1													
rainfall		M5-D	M1-D			M2-D			M10-D			outflow from	required
duration [min]	rainfall factor Z1	rainfalls <i>[mm</i>]	Z2	rainfalls <i>[mm</i>]	inflow [m ³]	Z2	rainfalls <i>[mm</i>]	inflow [m ³]	Z2	rainfalls [mm]	inflow [m ³]	attenuation tank [m ³]	storage [m³]
5	0.37	7.47	0.62	4.59	1.84	0.79	5.90	2.36	1.20	9.00	3.60	3.60	0.00
10	0.52	10.47	0.61	6.39	2.56	0.79	8.28	3.31	1.22	12.79	5.12	7.20	0.00
15	0.63	12.67	0.62	7.79	3.12	0.80	10.07	4.03	1.23	15.59	6.24	10.80	0.00
30	0.80	16.07	0.62	10.03	4.01	0.80	12.89	5.16	1.24	19.92	7.97	21.60	0.00
60	1.00	20.00	0.64	12.80	5.12	0.81	16.20	6.48	1.24	24.80	9.92	43.20	0.00
120	1.21	24.13	0.66	15.84	6.34	0.82	19.75	7.90	1.24	29.93	11.97	86.40	0.00
240	1.45	28.93	0.68	19.55	7.82	0.83	23.95	9.58	1.22	35.42	14.17	172.80	0.00
360	1.60	32.07	0.68	21.94	8.78	0.83	26.68	10.67	1.21	38.92	15.57	259.20	0.00
600	1.79	35.87	0.69	24.81	9.92	0.84	29.98	11.99	1.20	43.13	17.25	432.00	0.00
1440	2.24	44.80	0.71	31.79	12.72	0.84	37.85	15.14	1.18	52.88	21.15	1036.80	0.00

* Z2 is a growth factor from M5 rainfalls

REQUIRED STORAGE VOLUME PER RAINFALL DURATION FOR DISCHARGE RATE v2													
rainfall	uniofall.	" M5-D		M30-E)		ignore			ignore	•	outflow from	required
duration [<i>min</i>]	rainfall factor Z1	rainfalls <i>[mm</i>]	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	Z2	rainfalls <i>[mm</i>]	inflow [m ³]	Z2	rainfalls <i>[mm]</i>	inflow [m ³]	attenuation tank [m ³]	storage [m³]
5	0.37	7.47	1.46	10.89	4.35							4.50	0.00
10	0.52	10.47	1.49	15.63	6.25							9.00	0.00
15	0.63	12.67	1.51	19.12	7.65							13.50	0.00
30	0.80	16.07	1.53	24.59	9.83							27.00	0.00
60	1.00	20.00	1.54	30.87	12.35							54.00	0.00
120	1.21	24.13	1.54	37.05	14.82							108.00	0.00
240	1.45	28.93	1.52	43.91	17.56							216.00	0.00
360	1.60	32.07	1.50	48.22	19.29							324.00	0.00
600	1.79	35.87	1.49	53.30	21.32							540.00	0.00
1440	2.24	44.80	1.44	64.70	25.88							1296.00	0.00

* Z2 is a growth factor from M5 rainfalls

Pennell Associates - Civil & Sustainability Page: 1 260 Oldbury Road, Rowley Regis. B65 0QG Made by: AP 0121 296 0408 Date: 10.08.16 CATS, Leys Hill Road, Walford, Ross-on-Wye Ref No: 2504 Office: 6451 Location: SURFACE WATER DESIGN - 1 IN 10 YEAR PIPE Design of surface water sewer Area drained =Ar m2 h m head of drain ----- L m length of drain ----Effective area to be drained Ar=400 m² Impermeability factor P=1R=107 mm/hour Rainfall intensity Qs = (Ar*P*R/1000)/3600Volume of water run off =(400*1*107/1000)/3600=0.011889 m3/s Design flow in sewer Q=Qs=0.011889 m3/s Height of the drain (head) h=0.375 m Length of the drain L=30 m Inclination or fall i=h/L=0.375/30=0.0125 Design pipe for flow of 1 times full bore. Mean Hydraulic Depth factor m=0.25 1. Using Chezy formula Velocity = $C(mDi)^{0.5}$, where C is a constant usually taken as 56. Diameter of drain required D=1000*(Q^2/(0.785^2*56^2*m*i))^0.2 =1000*(0.011889^2/(0.785^2*56^2 *0.25*0.0125))^0.2 =118.54 mm D=150 mm Diameter to be adopted According to Escritt for this size of pipe the minimum desirable qradient is 1 in 174. Gradient greater than minimum recommended by Escritt, therefore OK. V=56*SQR(m*D/1000*i)Velocity $=56 \times SQR(0.25 \times 150/1000 \times 0.0125)$ =1.2124 m/s2. Using Escritt's formulae (see Drainage & Sewerage, published by

the Clay Pipe Development Association)

Q = 0.00035D^2.62/(1/i)^0.5 V = 26.738D^0.62/(1/i)^0.5

To quote Escritt:

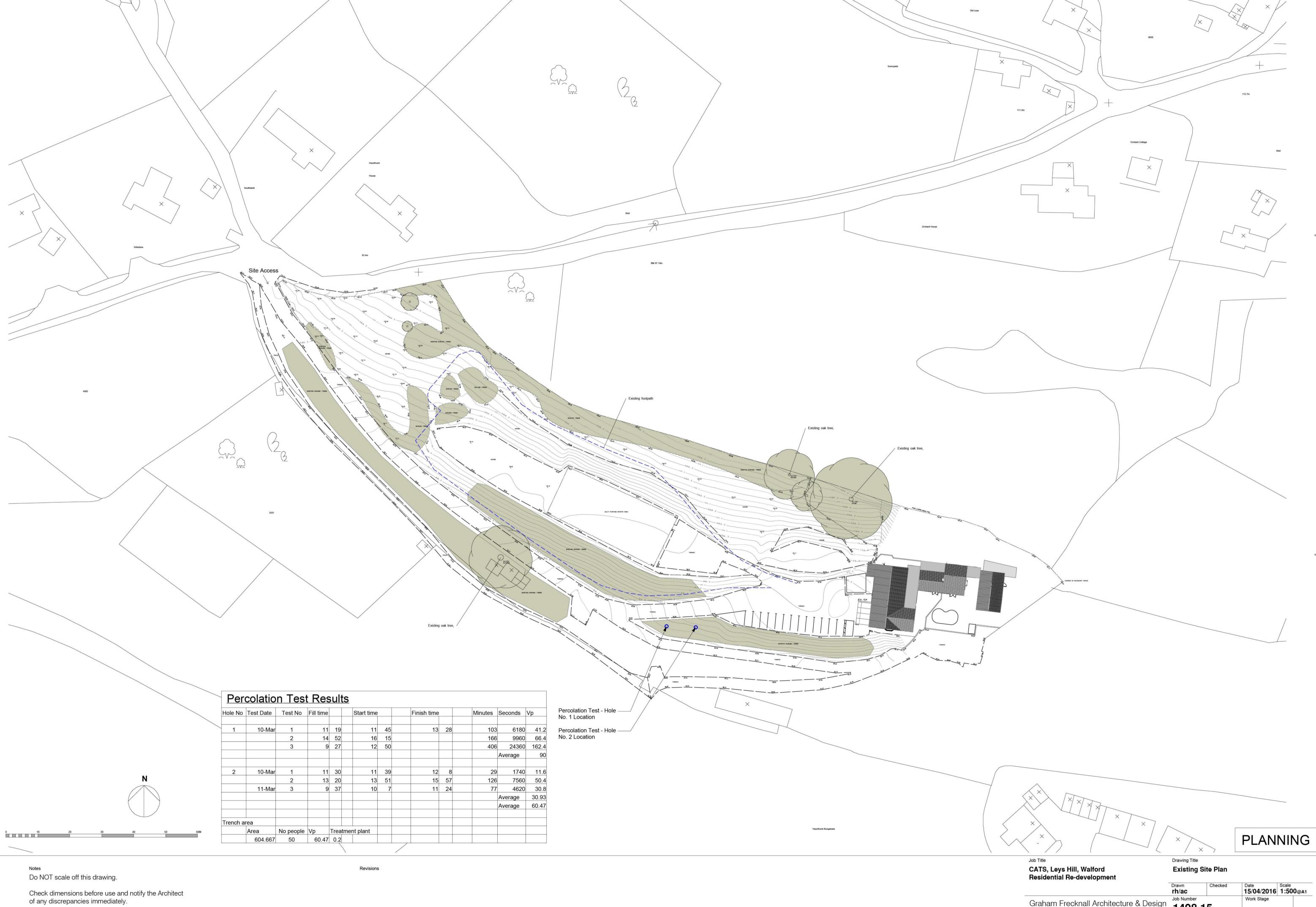
'The formulae approximate to the average of Hazen and William's formula for stoneware pipes, Barnes's formula for uncoated cast-iron pipes, Scobey's formula for rough-shuttered tunnel linings and Barnes's formula for brick conduits. They give fair accuracy for determining flows for

Pennell Associates - Civil & Sust 260 Oldbury Road, Rowley Regis. 0121 296 0408 CATS, Leys Hill Road, Walford, Ro	B65 0QG	Page: Made by: Date: Ref No:	
the smallest pipes used in domest as yet constructed in Great Brita		Office: the larges	
Diameter of drain required	D=(Q*1000*(1/i)^0. =(0.011889*1000*(/0.00035)^0.3816	1/0.0125)^	
Diameter to be adopted Velocity	=123.77 mm D=150 mm V=26.738*D^0.62/(S =26.738*150^0.62/ =1.1133 m/s		
3. To check for drain running par	tially full; see hy	draulic de	sign of
drains using Colebrook-White equa	tion in Hydraulics	Research P	apers
No 2 and No 4			
Diameter of drain to be used Surface roughness	D=150 mm ks'=0.6 mm (linear	measure)	
<pre>(a) For pipe running part full: Velocity V = -Ylog(ks/14.8m+1.225 v=viscosity Y=(32gmi)^0.5 Depth of flow as proportion of D Velocity of flow</pre>	_	. pipes whe	re
<pre>(b) For pipe running full using C Velocity V = -2Zlog(ks/3.7D+2.51v Z=(2gDi)^0.5 and v=viscosity Velocity running full</pre>	VDZ) for full pipes V=1.1227 m/s	where	
Maximum discharge running full	Q=0.01984 m3/s		
DESIGN SUMMARY			
Design discharge Gradient of pipe	0.011889 m3/s 1 in 80 or 0.0125		
(a) Using Chezy formula: Diameter of pipe Velocity of flow	150 mm 1.2124 m/s		
(b) Using Escritt's formulae: Diameter of pipe Velocity of flow	150 mm 1.1133 m/s		
(c) Using Colebrook-White formula Diameter of pipe Velocity of flow Proportional depth Capacity of pipe Velocity running full	: 150 mm 1.1721 m/s 0.55826 0.01984 m3/s 1.1227 m/s		

Pennell Associates - Civil & Sustainability Page: 3 260 Oldbury Road, Rowley Regis. B65 0QG Made by: AP 0121 296 0408 Date: 10.08.16 CATS, Leys Hill Road, Walford, Ross-on-Wye Ref No: 2504 Office: 6451 Location: SURFACE WATER DESIGN - 1 IN 30 YEAR PIPE Design of surface water sewer Area drained =Ar m2 h m head of drain ----- L m length of drain ----Effective area to be drained Ar=400 m² Impermeability factor P=1R=134 mm/hour Rainfall intensity Qs = (Ar*P*R/1000)/3600Volume of water run off =(400*1*134/1000)/3600 =0.014889 m3/s Design flow in sewer Q=Qs=0.014889 m3/s Height of the drain (head) h=0.375 m Length of the drain L=30 m Inclination or fall i=h/L=0.375/30=0.0125 Design pipe for flow of 1 times full bore. Mean Hydraulic Depth factor m=0.25 1. Using Chezy formula Velocity = $C(mDi)^{0.5}$, where C is a constant usually taken as 56. Diameter of drain required D=1000*(Q^2/(0.785^2*56^2*m*i))^0.2 =1000*(0.014889^2/(0.785^2*56^2 *0.25*0.0125))^0.2 =129.7 mm D=150 mm Diameter to be adopted According to Escritt for this size of pipe the minimum desirable qradient is 1 in 174. Gradient greater than minimum recommended by Escritt, therefore OK. V=56*SQR(m*D/1000*i)Velocity $=56 \times SQR(0.25 \times 150/1000 \times 0.0125)$ =1.2124 m/s2. Using Escritt's formulae (see Drainage & Sewerage, published by

the Clay Pipe Development Association)

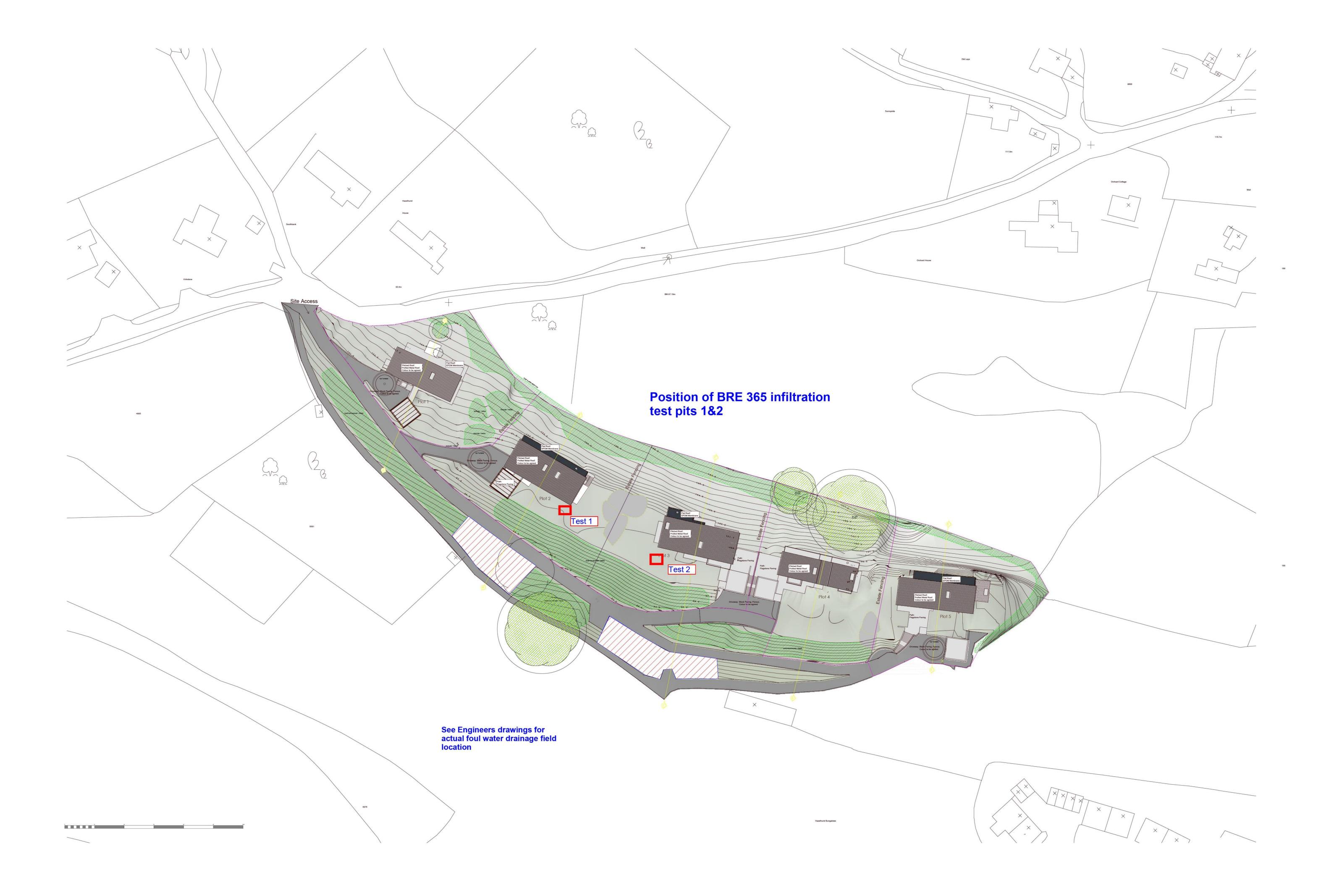
Q = 0.00035D^2.62/(1/i)^0.5 V = 26.738D^0.62/(1/i)^0.5


To quote Escritt:

'The formulae approximate to the average of Hazen and William's formula for stoneware pipes, Barnes's formula for uncoated cast-iron pipes, Scobey's formula for rough-shuttered tunnel linings and Barnes's formula for brick conduits. They give fair accuracy for determining flows for

Pennell Associates - Civil & Sust 260 Oldbury Road, Rowley Regis. 0121 296 0408 CATS, Leys Hill Road, Walford, Ro	B65 0QG	Page: Made by: Date: Ref No:	4 AP 10.08.16 2504		
the smallest pipes used in domest as yet constructed in Great Brita					
Diameter of drain required	=(0.014889*1000*(/0.00035)^0.3816	1/0.0125)^			
Diameter to be adopted Velocity	<pre>D= (Q*1000*(1/i)^0.5/0.00035)^0.38168 =(0.014889*1000*(1/0.0125)^0.5 /0.00035)^0.38168 =134.87 mm D=150 mm V=26.738*D^0.62/(SQR(1/i)*60) =26.738*150^0.62/(SQR(1/0.0125)*60) =1.1133 m/s ially full; see hydraulic design of ion in Hydraulics Research Papers D=150 mm ks'=0.6 mm (linear measure) /mY) for part full pipes where x=0.64744 V=1.23 m/s lebrook-White: DZ) for full pipes where V=1.1227 m/s Q=0.01984 m3/s 1 in 80 or 0.0125 150 mm</pre>				
3. To check for drain running par	tially full; see hy	draulic de	sign of		
drains using Colebrook-White equa	ation in Hydraulics	Research P	apers		
No 2 and No 4					
Diameter of drain to be used Surface roughness	D=150 mm ks'=0.6 mm (linear	measure)			
<pre>(a) For pipe running part full: Velocity V = -Ylog(ks/14.8m+1.225 v=viscosity Y=(32gmi)^0.5 Depth of flow as proportion of D Velocity of flow</pre>	_	pipes whe	re		
<pre>(b) For pipe running full using C Velocity V = -2Zlog(ks/3.7D+2.51v Z=(2gDi)^0.5 and v=viscosity Velocity running full Maximum discharge running full</pre>	/DZ) for full pipes V=1.1227 m/s	where			
DESIGN SUMMARY					
Design discharge Gradient of pipe	0.014889 m3/s 1 in 80 or 0.0125				
(a) Using Chezy formula: Diameter of pipe Velocity of flow	150 mm 1.2124 m/ <i>s</i>				
(b) Using Escritt's formulae: Diameter of pipe Velocity of flow	150 mm 1.1133 m/s				
(c) Using Colebrook-White formula Diameter of pipe Velocity of flow Proportional depth Capacity of pipe Velocity running full	150 mm 1.23 m/s 0.64744 0.01984 m3/s 1.1227 m/s				

Appendix C


Percolation Test Information for Infiltration

© Copyright belongs to the Architect.

Graham Frecknall Architecture & Design 9 Agincourt Street Monmouth Monmouthshire NP25 3DZ Tel 01600 716418 Fax 01600 714507 E-mail@gfarchitects.co.uk Graham Frecknall Architecture & Design 1498.15 Drawing Number AL.0.03

Drawn
rh/acCneckedDate
15/04/2016Scale
1:500@A1Job NumberWork Stage1498.15Rev.Drawing NumberRev.AL.0.03-

