

Geological & Geotechnical Consultants

John Kyrle High School, Ross-on-Wye

Report on Ground Investigation (November 2013)

Prepared for Built Offsite Limited

Geological & Geotechnical Consultants

Key GeoSolutions Ltd Nova House Audley Avenue Enterprise Park Newport Shropshire **TF10 7DW**

Tel. 01952 822960 01952 822961 Fax. email info@keygs.co.uk web

.....

.....

www.keygs.co.uk

Job Number:	13-312
Report Number:	13-312-R-001

Built Offsite Limited

John Kyrle High School, Ross-on-Wye

Report on Ground Investigation (November 2013)

Prepared by:

W Roberts BSc (Hons) FGS

Approved by:

B Duthie **BEng CGeol FGS FIQ**

Report Distribution List

Name	Copies	Rev.	Date	Copies	Rev.	Date	Copies	Rev.	Date
Hugh Adams	PDF	DRAFT	12/12/13						
KGS									

This report has been prepared by Key GeoSolutions Limited with all reasonable skill, care and diligence, within the terms of the Contract with the Client. The report is confidential to the Client and Key GeoSolutions Limited accept no responsibility of whatever nature to third parties to whom this report may be made known.

No part of this report may be reproduced without prior written approval of Key GeoSolutions Limited.

CONTENTS

Page Number

1.0	INTRODUCTION			
2.0	SITE OVERVIEW 2.1 Site Location 2.2 Geology of the Site	3 3 3		
3.0	GROUND INVESTIGATION	4		
4.0	LABORATORY TESTING	5		
5.0	DISCUSSIONS ON GROUND CONDITIONS 5.1 Soil Conditions 5.2 Shallow Foundations 5.3 Infiltration Test 5.4 Chemical Considerations	6 - 8 6 7 7 8		
6.0	CONCLUSIONS	9 - 10		

References

<u>Figures</u>

Figure 1	Site Location Plan
Figure 2	Trial Pit Location Plan

Appendices

Appendix 1	Trial Pit Logs
Appendix 2	Infiltration Test Results
Appendix 3	Laboratory Results (Alcontrol)

1.0 INTRODUCTION

Key GeoSolutions Ltd (KGS) have been commissioned by Built Offsite Limited to undertake a ground investigation at John Kyrle High School, Ross-on-Wye in order to ascertain the ground conditions for foundation design purposes in relation to the proposed construction of an extension to the main school building. In addition, Waste Acceptance Criteria (WAC) testing of the ground encountered and soakaway infiltration rate testing has been carried out.

A Kubota KX057-4 excavator was used to sink 5 No. trial pits; 3 No. in the vicinity of the proposed footprint of the new building to check the ground conditions and provide samples for geotechnical and chemical testing, and 2 No. in the vicinity of the proposed soakaway.

An initial phase of ground investigation which involved sinking 4 No. trial pits was carried out by KGS in July 2012; the details of which can be found in report reference 12-242-R-001.

The proposed structure is a modular building, which is rectangular, measuring approximately 20.7m by 16.3m and KGS are informed that it will be three storey. The proposed location of the building is to the north of the exiting sports hall. At the time of writing, KGS had not been supplied with proposed locations for this structure. The proposed location of the soakaway is on an area of ground to the north west of the artificial pitches.

The comments given in this report and any opinions expressed are based on the ground conditions encountered during the site work, the results of tests made in the field and in the laboratory and on information made available by Built Offsite. There may be, however, conditions pertaining to the site which have not been disclosed by the investigation and which therefore could not be taken into account in this report. In particular old foundations or underground services may be present that could affect the proposed development. The term 'topsoil' is used in this report to describe the surface, usually organic, layer including turf and shallow soils, weathered material with roots etc. and should not be taken to imply agricultural soil suitable for sale.

2.0 SITE OVERVIEW

2.1 Site Location

The site, which may be located by approximate National Grid Reference 360373mE 225308mN, is situated within the grounds of John Kyrle High School, off Three Crosses Road in Ross-on-Wye (Figure 1).

The new structure will be located on the northern side of the main school building, adjacent to the current sports hall and a recently build modular building; currently a grassed area. Access to the site is via the main car park at the front of the school (off Three Crosses Road).

2.2 Geology of the Site

The site is covered by BGS 1: 50,000 Geological Sheet No. 215 (Ross-on-Wye). This indicates the site to be underlain by the Brownstones Formation, which is part of the Lower Old Red Sandstone of Early Devonian age (c. 416-397 mya).

No superficial deposits are recorded.

Key GeoSolutions Ltd

3.0 GROUND INVESTIGATION

The most recent phase of site work was carried out on 25th November 2013 and in accordance with the guidelines laid down in BS EN 1997-2:2007 (1).

Five trial pits (TP1 to TP5) were dug in the vicinity of the proposed footprint of the proposed structure and soakaway to investigate the ground conditions. The trial pits were dug using a Kubota KX057-4 excavator provided by Construction 7 Ltd. The approximate locations of the trial pits are shown on Figure 2. The depths of the trial pits and descriptions of the soils encountered are given in the trial pit records (Appendix 1); disturbed samples were taken at the depths shown on the trial pit records.

KeyGS were made aware of the presence of an existing soakaway in the vicinity of the proposed building location; it is thought to be in an area where a surface depression is present (approximate area shown on Figure 2). This area was avoided during this phase of site work so as not to damage the soakaway.

The details of buried underground services for the site (as in July 2012) were obtained by the Client prior to the ground investigation commencing and additional, known, buried services were pointed out by the school staff; trial pit locations were scanned using a Cable Avoidance Tool prior to excavating.

4.0 LABORATORY TESTING

Asbestos Identification and Waste Acceptance Criteria (WAC) for inert landfill tests were carried out on representative samples of the made ground encountered; the results are given in Appendix 3.

Key GeoSolutions Ltd

5.0 DISCUSSIONS ON GROUND CONDITIONS

5.1 Soil Conditions

Five trial pits (numbered TP1 to TP5) were dug at the positions shown on Figure 2.

The following strata were encountered during the investigation:-

- Topsoil
- Possible made ground (Sand, gravel and cobbles)
- Sands and Gravels
- Cobbles
- Sandstone (Brownstone Formation)

Beneath the topsoil (0.05m thickness), trial pits TP1 and TP2 encountered dark red brown, very silty, slightly gravelly, fine to medium SAND which becomes increasingly gravelly with depth down to rockhead. Sandstone cobbles were encountered within the sand and gravel in the 0.2-0.7m above rockhead. Bedrock was encountered at 2.20 and 3.20mbgl (below ground level) respectfully, and found to be extremely weak, purple to grey/green, fine to medium grained SANDSTONE which becomes very weak and slightly gravelly with depth; this was thought to represent the Brownstone Formation. At c.1.80mbgl a tree stump was encountered in TP1.

Beneath the topsoil with rootlets (0.05m thickness), trial pits TP3, TP4 and TP5 encountered dark red brown, silty, slightly gravelly, fine to medium SAND (with rare brick cobbles in TP5) down to a depth of 0.50mbgl. Below which, to depths of 0.90, 1.05 and 1.20mbgl respectively, light red or brown, silty, sandy, gravelly, extremely weak to very weak sandstone COBBLES were encountered. Below this ground, red brown, silty to very silty, slightly gravelly, fine to medium SAND was encountered, which contains occasional cobbles and becomes increasingly gravelly with depth. Bedrock was encountered at 3.00, 2.70 and 2.10mbgl respectfully, and found to be extremely weak, pale red brown to grey/green, slightly gravelly, fine to medium, occasionally coarse grained SANDSTONE; this was thought to represent the Brownstone Formation.

The presence of a tree stump in TP1, suggests that the sands and gravels in the upper c.1.80m of TP1 are possibly Made Ground.

The variation in ground conditions, along with the previous July 2012 site investigation encountering large boulders in TP4, suggest that the sands, gravels and cobbles in the upper 0.90 to 1.20m of TP3, TP4 and TP5 are possibly Made Ground.

Made Ground is inherently variable, and the presence of further tree stumps, boulders or other potentially hazardous unknowns cannot be ruled out.

- TP1 was terminated at a depth of 3.30m bgl,
- TP2 was terminated at a depth of 2.80m bgl,
- TP3 was terminated at a depth of 3.00m bgl,
- TP4 was terminated at a depth of 2.70m bgl,
- TP5 was terminated at a depth of 2.10m bgl,

Groundwater was not encountered during the ground investigation.

5.2 Shallow Foundations

For the proposed type of structure it is considered that traditional shallow pad foundations will be suitable. For foundation design purposes it is recommended that an Allowable Bearing Pressure (ABP) of 140kN/m² should be used for the foundation designs. This ABP value is based on a dry dense sand; if ground conditions differ, and groundwater or soft/loose material is encountered, the design would need to be reviewed by a geotechnical engineer. (The ABP is the Maximum Bearing Capacity of the material divided by a suitable Factor of Safety (FoS), usually taken to be between 2.5 - 3.0 (depending on the quantity and quality of data available).)

The made ground is not considered to be a suitable load bearing material; therefore, the foundations should be founded within the underlying sand deposits at a minimum depth of 0.90m.

No loadings have been provided and the provision of a foundation design is beyond the scope of the current report.

The foundation design should consider the proximity of the cutting slope adjacent to the A40.

Prior to casting the foundations, a competent person should inspect the formation level and confirm the suitability or otherwise of the founding strata. Any potential soft areas or other anomalies (including remains of tree stumps) should be excavated further until ground with suitable strength is encountered; the excavation can be brought back up to the required formation level using adequately compacted clean granular material.

5.3 Infiltration Test

An infiltration test was undertaken in trial pit TP02, the pit was extended into the sandstone bedrock in order that testing could be carried out to establish the infiltration rate of the ground for soakaway design purposes.

The test pit measured 2.60m in length by 0.65m in width, and was cut vertical from 1.80mbgl down to 2.8mbgl. The results of the infiltration tests are included in Appendix 2; these results were used to calculate the infiltration rate as detailed in Building Research Establishment (BRE) Digest 365: Soakaway design.

The infiltration rate calculated from the test results was 5.68×10^{-6} m/s. This infiltration rate should be used for soakaway design purposes.

5.4 Chemical Considerations

5.4.1 Results of Chemical Analyses

The results of the chemical analyses undertaken on the samples from John Kyrle High School are presented in Appendix 3. The results show that the levels of chemical contamination found within the samples tested were generally below the Waste Acceptance Criteria limits for Inert Waste Landfill.

The levels of Antimony recorded in one sample, taken between 0.1 and 0.5mbgl in TP4, was 0.0952mg/Kg, which is above that of the limit acceptable for Inert Waste Landfill (0.06mg/Kg) and within that which is acceptable for Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill (0.7mg/Kg).

The elevated levels of Antimony found within the ground at John Kyrle High School will potentially result in increased costs, as it will be necessary to take the material off site for disposal to a Special Waste Management Site.

Ultimately, it is envisaged that the ground will largely be covered over either by the structure or landscaped areas. The long-term risk exposure to end-users will therefore be low.

Key GeoSolutions Ltd

6.0 CONCLUSIONS

A ground investigation has been carried out to determine the ground conditions for a new permanent structure at John Kyrle High School, Ross-on-Wye.

Five trial pits (TP1 to TP5) were dug using a Kubota KX057-4 excavator to allow the ground conditions to be described and tested as required. Beneath 0.05m of topsoil, trial pits TP1 and TP2 generally encountered silty, gravelly, fine to medium SAND which becomes increasingly gravelly with depth, with sandstone cobbles included above rockhead. Bedrock was encountered at 2.20 and 3.20mbgl respectfully, and found to be extremely weak SANDSTONE which becomes very weak and slightly gravelly with depth; this was thought to represent the Brownstone Formation. At c.1.80mbgl a tree stump was encountered in TP1.

Beneath the topsoil (0.05m thickness), trial pits TP3, TP4 and TP5 encountered dark red brown, silty, gravelly, fine to medium SAND (with rare brick cobbles in TP5) down to a depth of 0.50mbgl. Below which, to depths of 0.90, 1.05 and 1.20mbgl respectively, light red or brown, silty, sandy, gravelly, sandstone COBBLES were encountered. Below this ground, red brown, silty to very silty, gravelly, SAND was encountered, which contains occasional cobbles and becomes increasingly gravelly with depth. Sandstone bedrock was encountered at 3.00, 2.70 and 2.10mbgl respectfully.

The presence of a tree stump in TP1, suggests that the sands and gravels in the upper c.1.80m of TP1 are possibly Made Ground. The variation in ground conditions, along with the previous July 2012 site investigation encountering large boulders in TP4, suggest that the sands, gravels and cobbles in the upper 0.90 to 1.20m of TP3, TP4 and TP5 are possibly Made Ground. Made Ground is inherently variable, and the presence of further tree stumps, boulders or other potentially hazardous unknowns cannot be ruled out.

Groundwater was not encountered in any trial pit.

It should also be ensured that the construction workers undergo appropriate health and safety training, wear the required PPE and have access to suitable hygiene facilities.

The made ground is not considered to be a suitable load bearing material; therefore, the foundations should be founded within the underlying sand deposits at a minimum depth of 0.90m.

For the proposed type of structure it is considered that traditional shallow pad foundations will be suitable. For foundation design purposes it is recommended that an Allowable Bearing Pressure (ABP) of 140kN/m² should be used for the foundation designs. This ABP value is based on a dry dense sand; if ground conditions differ, and groundwater or soft/loose material is encountered,

the design would need to be reviewed by a geotechnical engineer. (The ABP is the Maximum Bearing Capacity of the material divided by a suitable Factor of Safety (FoS), usually taken to be between 2.5 - 3.0 (depending on the quantity and quality of data available).)

The foundation design should consider the proximity of the cutting slope adjacent to the A40.

Prior to casting the foundations, a competent person should inspect the formation level and confirm the suitability or otherwise of the founding strata. Any potential soft areas or other anomalies (including remains of tree stumps) should be excavated further until ground with suitable strength is encountered.

An infiltration test was undertaken in trial pit TP02; these returned an infiltration rate of 5.68×10^{-6} m/s; this infiltration rate should be used for soakaway design purposes.

The soil samples were sent to a UKAS approved laboratory for chemical analysis. The analytical suites chosen comprised Asbestos Identification, Waste Acceptance Criteria (WAC) for inert landfill and pH. The results show that the levels of chemical contamination found within the samples tested were generally below the Waste Acceptance Criteria limits for Inert Waste Landfill. However, levels of Antimony above that of the limit acceptable for Inert Waste Landfill and within that which is acceptable for Stable Non-reactive Hazardous Waste in Non-Hazardous Landfill were detected.

The elevated levels of Antimony found within the ground at John Kyrle High School will potentially result in increased costs, as it will be necessary to take the material off site for disposal to a Special Waste Management Site.

The results of the chemical analyses are presented in Appendix 3; these results should be made available to interested parties (i.e. waste management operators) if it is necessary to take the material off site for disposal.

REFERENCES

References:

- BS5930: Code of Practice for Site Investigations, British Standards Institution, 1999.
 Soakaway design: Building Research Establishment (BRE) Digest 365, 1991.

FIGURES

11 1 LSS Model used to create plot ""MODEL DETAIL"" Dra-n Date Provide The second seco BuiltOffSite John Kyrle High School

KEY GS

Orected Late Secto & A3 BD Nov '13 NTS No. Revision

Drawn Created WR BD Drawing No. FIGURE 1

APPENDICES

APPENDIX 1

Trial Pit Logs

- Broke		and beauti	Key GeoSolut	ions Ltd	TI	RIAL PIT NUMBER TP1
1	K	EY GS	info@keygs.c	<u>om</u> 1952 822960		PAGE 1 OF 1
		1	Fax: 01952 8	22961		
	CLIENT Built Offsite Ltd PROJECT NUMBER 13-312				PROJECT NAME John Kyrle Hig	5/
					PROJECT LOCATION Ross-on-	
		D 25/11/13		ETED _25/11/13		
		METHOD _Exca				TRIAL PIT SIZE CHECKED BY
EXCA	Allon					
	R		0			
DEPTH (m)	MBEI	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTI & REMARKS	ON
	SAMPLE TYPE NUMBER		GR			
			<u>14 /2</u> . <u>1</u> 0.05	T		
			xo .	Topsoil with rootlets Dark red brown very si	Ity slightly gravelly fine to medium SA	ND. Gravel is fine to medium
			×°	sub-rounded quartz an	d extremely weak sandstone	
			× ×			
			×0			
0.5			×			
			`o`.×			
			×			
			XO X			
			× ×			
1.0			×			
			x ax			
			×°			
			°× × Q			
			×			
1.5			×	becoming gravelly		
			× ×			
			° ♀ ×°			
			× °	tree stump encounte	red	
2.0			` o` .×			
			×	gravel becoming fine	to coarse sub-rounded to sub-angula	ar
2/13			XO . X			
12/1			× ×			
B.GD			×			
2.5			x ax			
4 AST			×°	with extremely weak	sandstone cobbles	
STD A			×			
			×			
			×			
3.0			`o` × ×			
			÷			
I I			×0 × 3.20			
-312 1			3.30	Extremely weak green	Bottom of trial pit at 3.30 r	metres
					Bottom of that pit at 3.30 f	
P / WI						
NOTE:	B Hole	abandoned due	to pit walls colla	ipsing.		
ERAL						
SAMP	LE TYPE	KEY U = Undi	sturbed D = D	isturbed B = Bulk J = .	lar VA = Shear Vane SPT = Standa	ard Penetration Test

KEY GS Key GeoSolutions Ltd. info@keygs.com Telephone: 01952 82 CLIENT Built Offsite Ltd PROJECT NUMBER 13-312			info@keygs.cd Telephone: 0 Fax: 01952 8	om 1952 822960 22961	PROJECT NAME	Wye			
		D 25/11/13		ETED _25/11/13		TRIAL PIT SIZE			
		METHOD _Exca							
LACA					LOGGED BY Will Roberts CHECKED BY BD				
DEPTH (m)	SAMPLE TYPE NUMBER	TESTS	GRAPHIC LOG		MATERIAL DESCRIPTI & REMARKS	ION			
			×0.05	Topsoil with rootlets					
			x x x x x x x x x x x x x x	sub-rounded quartz ar		ND. Gravel is fine to medium			
2.0			~ & × × × × × × × × × × × × × × × × × ×	with occasional band	ds of red/grey fine to medium SAND				
			× & ×0 . ×0 .	with occasional cobl	bles				
12/12			<u>×</u> 2.20	Extremely weak purple	e to green grey fine to medium grained	d SANDSTONE			
				becoming extremely	weak to very weak				
VT STD A4 ASTM LAB.			2.80	becoming very weak	s slightly gravelly. Gravel is fine to coa	rse rounded to sub-angular quartz			
1 GII			2.00		Bottom of trial pit at 2.80	metres.			
	S Soak	away Infiltration	Test carried out						
GENERAL SAMD	LE TYPE	KEY U = Undi	sturbed D = D	isturbed B = Bulk J =	Jar VA = Shear Vane SPT = Stand	ard Penetration Test			

-			Key GeoSolut	ions Ltd	Т	RIAL PIT NUMBER TP3		
1	K	EY GS	info@keygs.co Telephone: 0	om		PAGE 1 OF 1		
			Fax: 01952 8					
		Offsite Ltd			PROJECT NAME John Kyrle Hi			
		D 25/11/13		ETED 25/11/13				
EXCA						CHECKED BY BD		
HL ()	E TYPE BER		GG		MATERIAL DESCRIPTION			
DEPTH (m)	SAMPLE TYPE NUMBER	TESTS	GRAPHIC LOG		& REMARKS			
			<u></u> 0.05	Topsoil with roots and				
	• D	WAC	××	Dark red brown slight sub-rounded quartz a	y silty to silty slightly gravelly fine to m nd sandstone (possible MADE GROU	edium SAND. Gravel is fine to medium ND?)		
0.5			∞∞ 0.50					
				Light red silty very sar MADE GROUND?)	ndy very gravelly extremely weak to ve	ry weak sandstone COBBLES (possible		
 _ <u>- 1.5</u>			xo xo xo x x x x xo xo xo xo x xo	Red brown very silty s Gravel is fine to coars	ilightly gravelly fine to medium SAND e sub-rounded sandstone and quartz	with occasional sandstone cobbles.		
			× <u>1.80</u> × × × × × ×	Red brown very silty g sub-rounded to tabula		casional cobbles. Gravel is fine to coarse		
			x x x x x x x x x x	thick lamination of li	ght grey slightly silty gravelly fine to m	edium SAND		
			× × × × × × × × × × × × × ×	at 3.00m assumed r	ockhead			
			0.00		Bottom of trial pit at 3.00	metres.		
NI 210-0								
NOTE	S							
SAMP	LE TYPE	KEY U = Undi	sturbed D = D	isturbed B = Bulk J =	Jar VA = Shear Vane SPT = Stand	ard Penetration Test		

KEY GS Key GeoSolutions Ltd info@keygs.com Telephone: 01952 822960 Fax: 01952 822961					1	FRIAL PIT NUMBER TP4 PAGE 1 OF 1	
CLIEN	CLIENT Built Offsite Ltd				PROJECT NAME _ John Kyrle H	High School	
PROJE		IMBER 13-312			CO-ORDINATES 360359 mE, 225300 mN		
DATE	START	ED _25/11/13	COM	PLETED _ 25/11/13			
		CONTRACTOR		17		TRIAL PIT SIZE	
EXCA		METHOD Exc	avator		LOGGED BY Will Roberts	CHECKED BY BD	
DEPTH (m) GRAPHIC LOG LOG					MATERIAL DESCRIPTION & REMARKS		
 _ 0.5	• D	WAC	× × × 0.50	Dark red brown sligh sub-rounded to sub-	angular quartz and sandstone (possib	le MADE GROUND?)	
 					ne ĆÓBBLĖS with occasional boulder	rs (possible MADE GROUND?)	
 - 1.5 			xo x 0x 0	Dark red brown silty	slightly gravelly fine to medium SAND to sub-angular sandstone	with occasional cobbles. Gravel is fine to	
2.5			x Q X0 X0 X0 X	becoming gravelly			
			× 0 2.70	at 2.70m assumed			
 - 2.5 NOTES					Bottom of trial pit at 2.70	9 mou 65.	
NOTES	5						
SAMP	LE TYF	EKEY U = Und	disturbed D =	Disturbed B = Bulk J =	= Jar VA = Shear Vane SPT = Stan	dard Penetration Test	

~	KE	YGS	Key GeoSolut info@keygs.c Telephone: 0		Т	RIAL PIT NUMBER TP5 PAGE 1 OF 1
CLIEN			Fax: 01952 8	22961		ich School
					PROJECT NAME John Kyrle H PROJECT LOCATION Ross-on	
		25/11/13		ETED _ 25/11/13	The second se	
		ONTRACTOR _				CHECKED BY BD
EACA						
DEPTH (m) MUMBER NUMBER NUMBER					MATERIAL DESCRIPT & REMARKS	ION
			<u>₩1/2 11</u> 0.05 _	Topsoil with roots an		
	• D	WAC	× × × 0.50	medium sub-rounded GROUND?)	d to sub-angular of various lithologies i	
				coarse sub-rounded	ty gravelly COBBLES with occasional to sub-angular extremely weak to very ossible MADE GROUND?)	boulders. Gravel and cobbles are fine to weak dark purple / green grey fine to
<u>1.0</u>			90 x x x x x x x x x x x x x	Red brown very silty sub-angular sandsto	slightly gravelly fine to medium SAND. ne	Gravel is fine to medium sub-rounded to
			æ xo	becoming very gra	velly with occasional cobbles	
2.0			× 1.70	Extremely weak to v	ery weak pale red brown / green grey fi ccasional fine to medium quartz and m	ine to medium occasionally coarse nudstone gravel
			2.10		Bottom of trial pit at 2.10	metres.
NOTES		KEY U = Undis	sturbed D = D	isturbed B=Bulk J:	= Jar VA = Shear Vane SPT = Stand	lard Penetration Test

APPENDIX 2

Infiltration Test Results

SOAKAWAY TRIAL PIT PRO-FORMA

Site/Project:	John Kyrle Hig	gh School	Dimensions/Volume of Pit:		
Pit No:		TP2	Length:	2.6 m	
Date dug:		25/11/2013	Width:	0.65 m	
Date filled with wa	ter/monitored:	25/11/2013	Depth:	1 m	
			Volume:	1.69 m³	

Pit Location/Description of strata encountered:

0.0-0.05m Topsoil, 0.05-2.2m Dark red brown very silty gravelly fine to medium Sand, 2.2-2.8m Extremely weak to very weak purple/green grey fine to medium grained slightly gravelly Sandstone becoming fine to coarse grained with depth.

NOTES:

Pit filled from 2.80mbgl to 1.80mbgl

Time	Time elapsed from	Depth from GL	WL difference from
	previous reading (mins)	to WL (cm)	previous reading (cm)
00:00:00	00:00:00	180	0
00:01:00	00:01:00	181	1
00:02:00	00:01:00	181.5	0.5
00:03:00	00:01:00	182	0.5
00:04:00	00:01:00	182	0
00:05:00	00:01:00	182.5	0.5
00:10:00	00:05:00	183.5	1
00:15:00	00:05:00	184.5	1
00:22:00	00:07:00	186	1.5
00:30:00	00:08:00	187.5	1.5
00:36:00	00:06:00	188.5	1
00:45:00	00:09:00	190	1.5
00:55:00	00:10:00	191	1
01:00:00	00:05:00	19 1	0
01:15:00	00:15:00	192.5	1.5
01:30:00	00:15:00	194	1.5
01:45:00	00:15:00	195.5	1.5
02:00:00	00:15:00	196	0.5
02:15:00	00:15:00	198	2
02:30:00	00:15:00	200	2
02:45:00	00:15:00	201	1
03:00:00	00:15:00	201.5	0.5
03:20:00	00:20:00	202	0.5
03:40:00	00:20:00	202.5	0.5
04:00:00	00:20:00	203	0.5
04:20:00	00:20:00	203.5	0.5
04:40:00	00:20:00	204.5	1
04:45:00	00:05:00	205	0.5
05:00:00	00:15:00	206	1
05:20:00	00:20:00	207	1
05:40:00	00:20:00	208	1
06:00:00	00:20:00	208.5	0.5

John Kyrle High School - Soakaway Pit Test

Calculation of Soil Infiltration Rate - John Kyrle High School

Width Length Total depth (mbgl) Water depth (mbgl) Rock depth (mbgl) Base area Perimeter	W = L = Dt = Dw = Dc = A ₀ = P =	<i>0.65</i> m <i>2.6</i> m 2.085 m 1.8 m 2.2 m 1.69 m 6.5 m	, * * 	Actual Depth Du	ıg = 2.80r	n bgl
V p75 - 25 = a p50 = t p75 - 25 = f =	V axt	0.240825 2.61625 16200 =	2.61625 04:30:00 5.68208E-06 r	min 4.5 n/s	sec 270	c 16200

0.020455487 m/hr

APPENDIX 3

Results of WAC Testing (Undertaken by Alcontrol Laboratories)

Key Geosolutions Limited Nova House Audley Avenue Newport Shropshire TF10 7DW

Attention: Will Roberts

CERTIFICATE OF ANALYSIS

Date: Customer: Sample Delivery Group (SDG): Your Reference: Location: Report No: 09 December 2013 H_KEYGEO_NPT 131129-113 13-312 John Kyrle School 253168

We received 3 samples on Friday November 29, 2013 and 3 of these samples were scheduled for analysis which was completed on Monday December 09, 2013. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan Operations Manager

Alcontrol Laboratories is a trading division of ALcontrol UK Limited Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No.

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
8503515	TP3		0.00 - 0.50	25/11/2013
8503514	TP4		0.10 - 0.50	25/11/2013
8503516	TP5		0.00 - 0.50	25/11/2013

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG: Job:		113 GEO_NPT-52	Location Custome	r:	1	Key	Ge	osol	utio	ool ons Limited	Order Number: Report Number:
Client Reference		-	Attentior	1:		Will					Superseded Repo
SOLID						00	00		8		
Results Legend		Lab Sam	ple No(s)			8503515	8503514		8503516		
X Test						15	14		6		
No Deter	mination			┢		_		_	-		
No Deter		Cust	omer								
		Sample R				TP3	TP4		TP5		
				┝			_		_		
		AGS Re	ference								
				┢		0.00	0.10		0.00		
		Dept	n (m)			0.00 - 0.50	0.10 - 0.50		0.00 - 0.50		
					250g A	1kg IUB 60g VOC (ALE215)	250g A	250g Amber Jar (AL 1kg TUB	60g V(
		Cont	ainer	kg TL	mber	DC (A	mber	kg TL	DC (A		
				œ	Jar (A	LE215	Jar (A	Jar (A	LE215		
ANC at pH4 and ANC	CatpH 6	All	NDPs: 0	┢	ŕ	<u> </u>	F	ŕ	. 5		
			Tests: 2	H	x			x	-		
Anions by Kone (w)		All	NDPs: 0	H							
			Tests: 2	F		x		x			
Asbestos ID in Solid	Samples	All	NDPs: 0	t				_			
			Tests: 2	x				x	Γ		
CEN 2:1 Readings		All	NDPs: 0 Tests: 2						Π		
			Tests. 2			×		x			
CEN 8:1 Readings		All	NDPs: 0 Tests: 2								
			16505.2			X		x			
Dissolved Metals by	ICP-MS	All	NDPs: 0 Tests: 2								
			10313.2			X		x			
Dissolved Organic/In Carbon	organic	All	NDPs: 0 Tests: 2								
			10000.2			X		x			
Fluoride		All	NDPs: 0 Tests: 2								
						X		x			
GRO by GC-FID (S)		All	NDPs: 0 Tests: 2								
						x			x		
Loss on Ignition in so	oils	All	NDPs: 0 Tests: 2								
					x			×			
Mercury Dissolved		All	NDPs: 0 Tests: 2								
						×		x			
Mineral Oil		All	NDPs: 0 Tests: 2								
		A.II.		μ	x			×			
PAH Value of soil		All	NDPs: 0 Tests: 2	H							
PCBs by GCMS		All		L	x			×			
COS DY GOMS		All	NDPs: 0 Tests: 2	H							
1		All		μ	x			x			
pH		All	NDPs: 0 Tests: 2								

253168

SDG: Job: Client Reference:	131129-113 H_KEYGEC 13-312		Location: Customer Attention	: Ke	y Ge	yrle Sch osolutic berts	ool ns Limited	Order Number: Report Number: Superseded Repo
SOLID Results Legend		Lab Sample	No(s)	8503515	8503514	8503516	,	
No Determina Possible	ation	Custome Sample Refe		TP3	TP4	TP5		
		AGS Refere	nce					
		Depth (m	1)	0.00 - 0.50	0.10 - 0.50	0.00 - 0.50		
		Containe	r	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB	250g Amber Jar (AL 1kg TUB	60g VOC (ALE215) 250g Amber Jar (AL 1kg TUB		
Phenols by HPLC (W)	ŀ	All	NDPs: 0 Tests: 2		x	x		
Sample description	+	All	NDPs: 0 Tests: 3	x	x	x		
Total Dissolved Solids	ļ.	All	NDPs: 0 Tests: 2		x	x		
Total Organic Carbon	ļ	All	NDPs: 0 Tests: 2	x		x		

253168

CERTIFICATE OF ANALYSIS

Validated

SDG:	131129-113	Location:	John Kyrle School	Order Number:	
Job:	H_KEYGEO_NPT-52	Customer:	Key Geosolutions Limited	Report Number:	253168
Client Reference:	13-312	Attention:	Will Roberts	Superseded Report:	

Sample Descriptions

Grain Sizes							
very fine <0.0	63mm fine	0.063mm - 0.1mm n	medium 0.1m	ım - 2mm coar	rse 2mm - 1	0mm very co	arse >10mm
Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
8503515	TP3	0.00 - 0.50	Dark Brown	Clay Loam	<0.063 mm	Stones	N/A
8503514	TP4	0.10 - 0.50	Dark Brown	Sandy Silt Loam	0.1 - 2 mm	Stones	None
8503516	TP5	0.00 - 0.50	Dark Brown	Clay Loam	<0.063 mm	Stones	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

Validated

SDG:	131129-113	Location:	John Kyrle School	Order Number:	
Job:	H_KEYGEO_NPT-52	Customer:	Key Geosolutions Limited	Report Number:	253168
Client Reference:	13-312	Attention:	Will Roberts	Superseded Report:	

Results Legend	Cus	tomer Sample R	TP3	TP4	TP5		
# ISO17025 accredited. M mCERTS accredited.							
aq Aqueous / settled sample.		Depth (m)	0.00 - 0.50	0.10 - 0.50	0.00 - 0.50		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type	Soil/Solid	Soil/Solid	Soil/Solid		
* Subcontracted test.		Date Sampled	25/11/2013	25/11/2013	25/11/2013		
check the efficiency of the method.	The	Sample Time Date Received	29/11/2013	29/11/2013	29/11/2013		
results of individual compounds wi samples aren't corrected for the rec		SDG Ref	131129-113	131129-113	131129-113		
(F) Trigger breach confirmed	La	b Sample No.(s)	8503515	8503514	8503516		
1-4&+§@ Sample deviation (see appendix) Component	LOD/Units	AGS Reference Method					
Moisture Content Ratio	%	PM024	11	13	14		
Loss on ignition	<0.7 %	TM018	3.38 M		4.38 M		
Mineral oil >C10-C40	<1 mg/kg	TM061	<1 #		<1 #		
Organic Carbon, Total	<0.2 %	TM132	0.88		1.27 #		
рН	1 pH Units	TM133	8.15 M		8.29 M		
PCB congener 28	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 52	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 101	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 118	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 138	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 153	<3 µg/kg	TM168	<3 M		<3 M		
PCB congener 180	<3 µg/kg	TM168	<3 M		<3 M		
Sum of detected PCB 7 Congeners	<21 µg/kg	TM168	<21		<21		
ANC @ pH 4	<0.03 mol/kg	TM182	0.0684		0.0842		
ANC @ pH 6	<0.03 mol/kg	TM182	<0.03		0.0308		
Polyaromatic hydrocarbons, Total 17	<10 mg/kg	TM213	<10		<10		

CERTIFICATE OF ANALYSIS

				CEF	R	FICATE C	DF A	NALYSIS			
SDG:	131129-113		50	Location:	Jo	hn Kyrle Schoo	ol		Order Number:	050100	
Job: Client Reference:	H_KEYGEC 13-312	_NPT-	-52	Customer: Attention:		ey Geosolution: ill Roberts	s Lim	Ited	Report Number Superseded Re	: 253168 port:	
GRO by GC-FID (S										Per c	
Results Lege # ISO17025 accredited.	end	Cus	tomer Sample R	TP3		TP5					
M mCERTS accredited. aq Aqueous / settled sam	ple.										
diss.filt Dissolved / filtered san	nple.		Depth (m) Sample Type	0.00 - 0.50 Soil/Solid		0.00 - 0.50 Soil/Solid					
tot.unfilt Total / unfiltered samp * Subcontracted test.			Date Sampled	25/11/2013		25/11/2013					
** % recovery of the surr check the efficiency of			Sample Time Date Received	29/11/2013		29/11/2013					
results of individual co samples aren't correct			SDG Ref	131129-113		131129-113					
(F) Trigger breach confirm 1-4&+§@ Sample deviation (see	ed	La	b Sample No.(s) AGS Reference	8503515		8503516					
Component		/Units	Method								
GRO Surrogate % recovery**		%	TM089	84		116					
Methyl tertiary butyl et (MTBE)	her <5	µg/kg	TM089	<5	м	<5	м				
Benzene	<10	µg/kg	TM089	<10	м	<10	м				
Toluene	<2	µg/kg	TM089	<2	м	<2	м				
Ethylbenzene	<3	µg/kg	TM089	<3	M	<3	м				
m,p-Xylene	<6	µg/kg	TM089	<6		<6					
o-Xylene	<3	µg/kg	TM089	<3	M	<3	М				
sum of detected mpo	<9	µg/kg	TM089	<9	М	<9	М				
xylene by GC sum of detected BTE>	(by <24	µg/kg	TM089	<24	-	<24	_				
GC					_						
					_						
					_						
								-			
							_				
					_						
					_						
					_						
		_			_						
					_						
					_						

CERTIFICATE OF ANALYSIS

Validated

		N. N. N.				
SDG:	131129-113	Location:	John Kyrle School	Order Number:		
Job:	H_KEYGEO_NPT-52	Customer:	Key Geosolutions Limited	Report Number:	253168	
Client Reference:	13-312	Attention:	Will Roberts	Superseded Report:		

Asbestos Identification - Solid Samples

				o idoiit	mourio		iu oun	10100			
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	TP3 0.00 - 0.50 SOLID 25/11/2013 00:00:00 131129-113 8503515 TM048	05/12/13	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Cust. Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	TP5 0.00 - 0.50 SOLID 25/11/2013 00:00:00 131129-113 8503516 TM048	05/12/13	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected

129-113 EYGEO_NPT-52 312	Cu	1917 A. B. M. A. M.	solutions Limited	Rep		253168	
С	EN 10:1	CUMULATIV	E TWO STAG	E BATCH T	ST		
RESULTS						REF : BS	EN 12457
			Site Location		John k	Vrle School	
0.203				e Content (%)		.,	
-			Dry Matter Cont	ent (78)	00		
					1		
13112	9-113					Criteria Limits	
85035	14						
25-No	v-2013					Stable	
TP4					Inert Waste	Non-reactive Hazardous	Hazardous
	0.50				Landfill	Waste in Non- Hazardous	Waste Landfi
						Landfill	
	2	I			-	-	e F
	-				-	-	æ
	-				-	-	-
	×						-
	-					-	-
	-				-	-	-
	-				-	-	÷
	-				-	-	-
	once in 2:1	Conc [™] in 8:1	a 2:1 conce				
U 2	eluate	C8 eluate	ledened	leached			
0					0.5	2	25
		0.0012	0000000000000	371877 #21178	0.0	-	
	.0101	0.00385	0.0202	0.0469	20	100	300
0	.0101 0.0001	0.00385	0.0202	0.0469	20 0.04	100 1	300 5
0							
0 <(0.0	0.0001	<0.0001	<0.0002	<0.001	0.04	1	5
0 <(0.0 0.0 0.0	0.0001 000963 00571 000102	<0.0001 0.000499 0.00119 <0.00001	<0.0002 0.00193 0.0114 0.0000204	<0.001 0.00561 0.018 <0.0001	0.04 0.5 2 0.01	1 10 50 0.2	5 70 100 2
0 <(0.0 0.0 0.0 0.0 0.0	0.0001 000963 00571 000102 00266	<0.0001 0.000499 0.00119 <0.00001 0.00414	<0.0002 0.00193 0.0114 0.0000204 0.00533	<0.001 0.00561 0.018 <0.0001 0.0394	0.04 0.5 2 0.01 0.5	1 10 50 0.2 10	5 70 100 2 30
0 <(0.0 0. 0. 0. 0. 0. 0. 0.	0.0001 000963 00571 000102 00266 000697	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175	<0.0002 0.00193 0.0114 0.0000204 0.00533 0.0014	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245	0.04 0.5 2 0.01 0.5 0.4	1 10 50 0.2 10 10	5 70 100 2 30 40
0 <(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0001 000963 00571 000102 00266 000697 00108	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168	<0.0002 0.00193 0.0114 0.0000204 0.00533 0.0014 0.00215	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291	0.04 0.5 2 0.01 0.5 0.4 0.5	1 10 50 0.2 10 10 10 10	5 70 100 2 30 40 50
0 <(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0001 000963 00571 000102 00266 000697 00108 00449	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168 0.0103	<0.0002 0.00193 0.0114 0.000204 0.00533 0.0014 0.00215 0.00898	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.00291 0.0952	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	1 10 50 0.2 10 10 10 10 0.7	5 70 100 2 30 40 50 5
0 <(0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0.0001 000963 00571 000102 00266 000697 00108 00449 000652	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168 0.0103 0.000737	<0.0002 0.00193 0.0114 0.0000204 0.00533 0.0014 0.00215 0.00898 0.00131	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.00291 0.0952 0.00726	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	1 10 50 0.2 10 10 10 10 0.7 0.5	5 70 100 2 30 40 50 5 5 7
0 <(0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0.0001 000963 00571 000102 00266 000697 00108 00449	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168 0.0103	<0.0002 0.00193 0.0114 0.000204 0.00533 0.0014 0.00215 0.00898	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.00291 0.0952	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06	1 10 50 0.2 10 10 10 10 0.7	5 70 100 2 30 40 50 5
0 <(0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0.0001 000963 00571 000102 00266 000697 00108 00449 000652 00133	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168 0.0103 0.000737 <0.00041	<0.0002 0.00193 0.0114 0.000204 0.00533 0.0014 0.00215 0.00898 0.00131 0.00267	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.00291 0.0952 0.00726 <0.0041	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	1 10 50 0.2 10 10 10 0.7 0.5 50	5 70 100 2 30 40 50 5 5 7 200
0 <(0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	0.0001 000963 00571 000102 00266 000697 00108 00449 000652 00133 <2	<0.0001 0.000499 0.00119 <0.00001 0.00414 0.000175 0.000168 0.0103 0.000737 <0.00041 <2	<0.0002 0.00193 0.0114 0.000204 0.00533 0.0014 0.00215 0.00898 0.00131 0.00267 <4	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.0952 0.00726 <0.0041 <20	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800	1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000	5 70 100 2 30 40 50 5 7 7 200 25000
0 <(0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.0001 000963 00571 000102 00266 000697 00108 00449 000652 00133 <2 0.669	 <0.0001 0.000499 0.00119 <0.00001 0.000414 0.000175 0.000168 0.0103 0.000737 <0.00041 <2 <0.5 	<0.0002 0.00193 0.0114 0.000204 0.00533 0.0014 0.00215 0.00898 0.00131 0.00267 <4 1.34	<0.001 0.00561 0.018 <0.0001 0.0394 0.00245 0.00291 0.0952 0.00726 <0.0041 <20 <5	0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	1 10 50 0.2 10 10 10 0.7 0.5 50 15000 150	5 70 100 2 30 40 50 5 7 200 25000 500
	12 RESULTS () 0.203 () 0.175 >95% 13112 85035 25-No TP4 0.10 - C2 C	II2 Att CEN 10:1 RESULTS I) 0.203 I) 0.175 >95% I31129-113 8503514 25-Nov-2013 TP4 0.10 - 0.50 -	Init Attention: Will Robe CEN 10:1 CUMULATIV RESULTS a) 0.203 b) 0.203 b) 0.175 >95% 131129-113 8503514 25-Nov-2013 TP4 0.10 - 0.50	I12 Attention: Will Roberts CEN 10:1 CUMULATIVE TWO STAG RESULTS Site Location n) 0.203 Natural Moisture n) 0.175 Dry Matter Cont >95% Dry Matter Cont 131129-113 8503514 25-Nov-2013 TP4 0.10 - 0.50	Init Attention: Will Roberts Sup CEN 10:1 CUMULATIVE TWO STAGE BATCH TH CEN 10:1 CUMULATIVE TWO STAGE BATCH TH RESULTS Site Location Natural Moisture Content (%) 0 0.175 0 0.175 >95% Dry Matter Content (%) 131129-113 0.107 131129-113 0.107 131129-113 0.107 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-113 0.100 131129-114 0.100 131129-113 0.100 131129-113 0.100 131129-114 0.100 131129-115 0.100 131129-116 0.100 131129-117 0.100 131129-118 0.100 131129-119 0.100	Id Attention: Will Roberts Superseded Report: CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST RESULTS Site Location John H (a) 0.203 Natural Moisture Content (%) 16.2 (b) 0.175 Dry Matter Content (%) 86 >95% Landfi Landfi 131129-113 Landfi 131129-113 Landfi 131129-113 Landfi 131129-113 Landfi 131129-113 Landfi 131129-113 Landfi 0.10 - 0.50 Imert Waste	Internation: Will Roberts Superseded Report: CEN 10:1 CUMULATIVE TWO STAGE BATCH TEST RESULTS REF : BS Site Location John Kyrle School 0.203 Natural Moisture Content (%) 16.2 0) 0.175 Dry Matter Content (%) 86 >95% Eandfill Waste Accel Criteria Limits 131129-113 Inert Waste Stable 131129-113 Inert Waste Inert Waste Accel 131129-113 Inert Waste Stable 0.10 - 0.50 Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Inert Waste Ine

2:1	8:1
03-Dec-2013	04-Dec-2013
8.099	7.821
155.20	55.30
19.50	19.40
0.322	1.400
0.235	
	03-Dec-2013 8.099 155.20 19.50 0.322

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation Mcerts Certification does not apply to leachates

09/12/2013 13:37:23

13:37:14 09/12/2013

Validated

ſ

Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	O_NPT-52 Cu At CEN 10:*	cation: John Kyrl Istomer: Key Geos Iention: Will Robe	olutions Limited rts	Ordel Repo Supe iE BATCH TE		253168 REF : BS Kyrle School	EN 12457
WAC ANALYTICAL RES Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	0.211 0.175 >95%	-	Site Location Natural Moisture	e Content (%)	John k 20.5		EN 12457
Client Reference Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	0.211 0.175 >95%		Natural Moisture		20.5		EN 12457
Mass Sample taken (kg) Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	0.175 >95%		Natural Moisture		20.5	Kyrle School	
Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	0.175 >95%				20.5		
Mass of dry sample (kg) Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	0.175 >95%						
Particle Size <4mm Case SDG Lab Sample Number(s) Sampled Date	>95%		bry matter com				
Case SDG Lab Sample Number(s) Sampled Date							
SDG Lab Sample Number(s) Sampled Date	131129-113						
Lab Sample Number(s) Sampled Date						ill Waste Acce Criteria Limits	-
Sampled Date							•
	8503516			[2	
	25-Nov-2013				19. 1.19.5 (F)	Stable Non-reactive	
Customer Sample Ref.	TP5				Inert Waste Landfill	Hazardous Waste in Non-	Hazardous Waste Landfil
Depth (m)	0.00 - 0.50					Hazardous Landfill	
Solid Waste Analysis						Lanuilli	
Total Organic Carbon (%)	1.27				3	5	6
Loss on Ignition (%)	4.38				-	-	10
Sum of BTEX (mg/kg)	<0.024				6	-	-
Sum of 7 PCBs (mg/kg) Mineral Oil (mg/kg)	<0.021				500	-	-
PAH Sum of 17 (mg/kg)	<10				100	-	-
pH (pH Units)	8.29				-	<6 or >9	-
ANC to pH 6 (mol/kg)	0.0308				-	-	· · ·
ANC to pH 4 (mol/kg)	0.0842				-	-	-
Eluate Analysis	C2 Conc ⁿ in 2:1 eluate	C8 Conc [®] in 8:1 eluate	A2 2:1 conc ⁿ leached	Cumulative A2-10 conc ⁿ leached	Limitvalue		
Annuals		ng/l		Indefined		es for compliance lea S EN 12457-3 at L/S	
	0.000853			/kg	using B	S EN 12457-3 at L/S	10 l/kg
Arsenic		0.000912	0.00171	/kg 0.00904	using B 0.5	S EN 12457-3 at L/S	10 l/kg 25
Barium	0.0138	0.00679	0.00171 0.0276	/kg 0.00904 0.0771	using B 0.5 20	S EN 12457-3 at L/S 2 100	10 l/kg 25 300
Arsenic Barium Cadmium Chromium		2000 100 201 101 1	0.00171	/kg 0.00904	using B 0.5	S EN 12457-3 at L/S	10 l/kg 25
Barium Cadmium Chromium	0.0138 <0.0001	0.00679 <0.0001	0.00171 0.0276 <0.0002	/kg 0.00904 0.0771 <0.001	using B 0.5 20 0.04	S EN 12457-3 at L/S 2 100 1	10 l/kg 25 300 5 70
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF)	0.0138 <0.0001 0.00138	0.00679 <0.0001 0.000713	0.00171 0.0276 <0.0002 0.00275	/kg 0.00904 0.0771 <0.001 0.00801	using B 0.5 20 0.04 0.5	S EN 12457-3 at L/S 2 100 1 10	10 l/kg 25 300 5
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum	0.0138 <0.0001 0.00138 0.0116 <0.00001 0.00162	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172	using B 0.5 20 0.04 0.5 2	S EN 12457-3 at L/S 2 100 1 10 50 0.2 10	10 l/kg 25 300 5 70 100 2 30
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel	0.0138 <0.0001 0.00138 0.0116 <0.00001 0.00162 0.000728	0.00679 <0.0001 0.000713 0.000179 0.0000156 0.00173 0.000203	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272	using B 0.5 20 0.04 0.5 2 0.01 0.5 0.5 0.4	S EN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10	10 l/kg 25 300 5 70 100 2 30 40
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead	0.0138 <0.0001 0.00138 0.0116 <0.00001 0.00162 0.000728 0.000414	0.00679 <0.0001 0.000713 0.000179 0.0000156 0.00173 0.000203 0.000341	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351	Using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	SEN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 10	10 l/kg 25 300 5 70 100 2 30 40 50
Barium Cadmium	0.0138 <0.0001 0.00138 0.0116 <0.00001 0.00162 0.000728 0.000414 0.00115	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173 0.000203 0.000241 0.000373	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828 0.0023	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351 0.0339	using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.4 0.5 0.06	S EN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 10 0.7	10 l/kg 25 300 5 70 100 2 30 40 50 5
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium	0.0138 <0.0001	0.00679 <0.0001 0.000713 0.000179 0.0000156 0.00173 0.000203 0.000341 0.000373 <0.00039	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351	Using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5	SEN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 10	10 l/kg 25 300 5 70 100 2 30 40 50
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride	0.0138 <0.0001 0.00138 0.0116 <0.00001 0.00162 0.000728 0.000414 0.00115	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173 0.000203 0.000241 0.000373	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828 0.0023 <0.00078	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351 0.0339 <0.0039	Using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1	S EN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 10 0.7 0.5	10 J/kg 25 300 5 70 100 2 30 40 50 5 7
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	0.0138 <0.0001	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173 0.000203 0.000341 0.00373 <0.00039 0.000782 <2 <2 <0.5	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828 0.0023 <0.00078 0.00078	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351 0.0339 <0.0039 0.00918	using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4	SEN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50	10 J/kg 25 300 5 70 100 2 30 40 50 5 7 200 25000 500
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride Sulphate (soluble)	0.0138 <0.0001	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173 0.000203 0.000341 0.00373 <0.00039 0.000782 <2 <2 <0.5 <2	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828 0.0023 <0.00078 0.00364 <4 <1 <4	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351 0.0339 <0.0039 0.00918 <20 <5 <20	using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10 1000	SEN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 10 0.7 0.5 50 15000 150 20000	10 J/kg 25 300 5 70 100 2 30 40 50 5 7 200 25000 500 5000
Barium Cadmium Chromium Copper Mercury Dissolved (CVAF) Molybdenum Nickel Lead Antimony Selenium Zinc Chloride Fluoride	0.0138 <0.0001	0.00679 <0.0001 0.000713 0.00179 0.0000156 0.00173 0.000203 0.000341 0.00373 <0.00039 0.000782 <2 <2 <0.5	0.00171 0.0276 <0.0002 0.00275 0.0232 <0.00002 0.00323 0.00146 0.000828 0.0023 <0.00078 0.00364 <4 <1	/kg 0.00904 0.0771 <0.001 0.00801 0.0308 0.000136 0.0172 0.00272 0.00351 0.0339 <0.0039 0.00918 <20 <5	using B 0.5 20 0.04 0.5 2 0.01 0.5 0.4 0.5 0.06 0.1 4 800 10	SEN 12457-3 at L/S 2 100 1 10 50 0.2 10 10 10 10 0.7 0.5 50 15000 150	10 J/kg 25 300 5 70 100 2 30 40 50 5 7 200 25000 500

Conductivity (µS/cm)	196.60	72.40
Temperature (ºC)	19.70	19.30
Volume Leachant (Litres)	0.314	1.400
Volume of Eluate VE1 (Litres)	0.230	-

Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation

Mcerts Certification does not apply to leachates 09/12/2013 13:37:23

CERTIFICATE OF ANALYSIS

Validated

SDG:	131129-113	Location:	John Kyrle School	Order Number:	
Job:	H_KEYGEO_NPT-52	Customer:	Key Geosolutions Limited	Report Number:	253168
Client Reference:	13-312	Attention:	Will Roberts	Superseded Report:	

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample '	Surrogat Correcte
ASB_PREP			Sample	Correcter
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM114		Leaching Procedure for CEN Two Stage BatchTest 2:1/8:1 Cumulative		
TM018	BS 1377: Part 3 1990	Determination of Loss on Ignition		
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 & 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0 580 38924 3	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 & 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

CERTIFICATE OF ANALYSIS

SDG:	131129-113	Location:	John Kyrle School	Order Number:	
Job:	H_KEYGEO_NPT-52	Customer:	Key Geosolutions Limited	Report Number:	253168
Client Reference:	13-312	Attention:	Will Roberts	Superseded Report:	

Test Completion Dates

Lab Sample No(s)	8503515	8503514	8503516
Customer Sample Ref.	TP3	TP4	TP5
AGS Ref.			
Depth	0.00 - 0.50	0.10 - 0.50	0.00 - 0.50
Туре	SOLID	SOLID	SOLID
ANC at pH4 and ANC at pH 6	06-Dec-2013		06-Dec-2013
Anions by Kone (w)		06-Dec-2013	06-Dec-2013
Asbestos ID in Solid Samples	05-Dec-2013		05-Dec-2013
CEN 2:1 Leachate (2 Stage)		03-Dec-2013	03-Dec-2013
CEN 2:1 Readings		06-Dec-2013	06-Dec-2013
CEN 8:1 Leachate (2 Stage)		06-Dec-2013	06-Dec-2013
CEN 8:1 Readings		06-Dec-2013	06-Dec-2013
Dissolved Metals by ICP-MS		09-Dec-2013	09-Dec-2013
Dissolved Organic/Inorganic Carbon		06-Dec-2013	06-Dec-2013
Fluoride		09-Dec-2013	09-Dec-2013
GRO by GC-FID (S)	04-Dec-2013		04-Dec-2013
Loss on Ignition in soils	06-Dec-2013		06-Dec-2013
Mercury Dissolved		06-Dec-2013	06-Dec-2013
Mineral Oil	06-Dec-2013		06-Dec-2013
PAH Value of soil	05-Dec-2013		05-Dec-2013
PCBs by GCMS	08-Dec-2013		08-Dec-2013
рН	04-Dec-2013		04-Dec-2013
Phenols by HPLC (W)		09-Dec-2013	09-Dec-2013
Sample description	03-Dec-2013	30-Nov-2013	03-Dec-2013
Total Dissolved Solids		06-Dec-2013	06-Dec-2013
Total Organic Carbon	09-Dec-2013		09-Dec-2013

CERTIFICATE OF ANALYSIS

Key Geosolutions Limited

John Kyrle School

Will Roberts

Location:

Customer:

Attention:

 SDG:
 131129-113

 Job:
 H_KEYGEO_NPT-52

 Client Reference:
 13-312

Appendix General

1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.

4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.

5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.

6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.

7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.

8. If appropriate preserved bottles are not received preservation will take place on receipt . However, the integrity of the data may be compromised.

9. NDP -No determination possible due to insufficient/unsuitable sample.

10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals total metals must be requested separately.

11. Results relate only to the items tested.

12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.

13. Surrogate recoveries -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.

 Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.

15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).

16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).

17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.

18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.

19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.

20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.

253168

Order Number:

Report Number:

Superseded Report:

21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero headspace extraction.

22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

Sample Deviations

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Holding time exceeded before sample received
9	Sampled on date not provided
	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to sampled on date
9	Sample Holding Time exceeded - Late arrival of instructions

Asbestos

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Ashestos Type	Common Name
Chrysofile	WhiteAsbestos
Amoste	BownAsbestos
Crocidate	Blue Asbestos
Fibraus Adinaîte	-
Rbrous Anthophylite	
Fibraus Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than :

Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.